Advertisement for orthosearch.org.uk
Results 1 - 20 of 75
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 6 - 6
1 Oct 2012
Südhoff I Reising K Mollard B Helwig P
Full Access

The palpation of the controlateral iliac spinae remains a major hurdle to the success of navigation in lateral position. Several studies are seeking for alternative landmarks to compute the anterior pelvic plane (APP). Up to now, none of those methods have been used in clinical routine. Ultrasound navigation offers a great potential to identify new bony landmarks. The tubercles of the lower lumbar spine and the symphysis can easily be imaged. Those points define a sagittal plane, that can be used as a symmetry plane to compute a virtual controlateral spinae from the acquired colateral spinae. A virtual pelvic plane can then be computed. The objective of this study was to check the accuracy and reproducibility of this virtual anterior pelvic plane. 6 hips (3 left, 3 right) from 4 cadavers (mean BMI 22,6; range 19,5–26,7) embalmed with glycerol and alcohol were used for this study. All anatomic landmarks were acquired with the OrthoPilot® Ultrasound navigation system. One experienced surgeon acquired the reference APP with the cadavers lying supine. The cadavers were then placed in lateral position. Two experienced surgeons acquired 6 times following landmarks: 3 lower lumbar tubercles, 3 sacral tubercles (see Figure 1), the posterior spines, the symphysis and the colateral iliac spine. Several sagittal planes were computed using all points (least square plane) and all possible combinations between one symphysis point, one lower lumbar tubercle point (L5, L4 or L3), and one sacral tubercle point (S2 or S1). The angular error of the resulting virtual APP to the reference APP was computed. For each cadaver, an error map was computed to visualize the error of the virtual APP with respect to the height of the used sacral and lumbar tubercles along the spine. The reference APP was acquired with a good reproducibility: the deviation between each acquisition to the mean of all acquisitions was smaller than 1° (except for cadaver 2 right side, the deviation reached 2 ° in the frontal plane). As some sacral and lumbar points were mixed during the acquisition, the line joining the posterior spines was used to separate the sacral from the lumbar points. The mean errors and standard deviations were comparable between operators. The least square plane computed with all points strongly depended on the cadaver positioning : for the same cadaver, the mean error reached 0°on the left side and 8° on the right side. More constant results were obtained by using a combination of 3 points. 5 outliers were identified and removed as they clearly corresponded to erroneous acquisitions on bad quality images. After having removed those outliers, the mean error ranged between 2° and 5° and the standard deviation between 1° and 3°. The best combination of points was a point on the symphysis, the lowest sacral tubercle (S2) and the lowest lumbar tubercle (L5). This study shows that the symphysis, the lower lumbar and sacral tubercles can be used to define a sagittal plane and thereby define a virtual anterior pelvic plane. Outliers should be suppressed by taking special care to the image quality and by adding a guided ultrasound functionality: visualizing the resulting sagittal plane on the ultrasound picture would enable the surgeon to easily control the accuracy of his acquired plane. The next steps consist in checking the feasibility in a clinical set-up


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 51 - 51
1 Feb 2016
Amiri S Poon J Garbuz D Bassam M
Full Access

The anterior pelvic plane (APP) is used as a reference in various pelvic surgeries in orthopaedics. Current methods for identifying the APP are limited in accuracy and efficiency. A quick and accurate method for registering the pelvis orientation can be very useful. Previously, we have introduced a Tracked C-arm (TC-arm) system for use with any C-arm fluoroscopy for producing spatially calibrated imaging views. This system has been tried for estimating the APP. Early results, however, has shown limited repeatability in identifying the anterior superior iliac spine (ASIS) landmarks. This study improves the previous algorithms for a robust registration of the APP. A Sawbone pelvis was used, and its APP was marked by radio-dense ball-bearings. In the new addition, the TC-arm allowed segmenting the ASIS in an interactive user-interface by taking guidance from a reference line tangential to the ipsilateral pubic tubercle for marking the most anterior point on the iliac-crest. The imaging and analysis was repeated 10 times. The results were compared to reconstruction of the fiducial markers placed on the true APP. Accuracy of 1.4° and 4.4° were found for registering the pelvic tilt and rotation, correspondingly. The overall accuracy and precision of registration of the APP were 4.7° and 0.82°, correspondingly. The new method showed 7.5 times improvement in repeatability of measuring the pelvic tilt (SD<0.4°) compared to the previous fluoroscopic methods. This technique addresses an important challenge in estimation of the pelvic bone which is crucial for reliable device placement and producing standard radiographic views in surgery


The anterior pelvic plane (APP) angle is often used as a reference to decide pelvic alignment for hip surgeons. However, Rousseau criticised the validness of the APP angles because the APP angles in standing position measured on conventional standing X-ray films never showed correlation with the other pelvic alignment parameters, such as sacral slope (SS). We measured the APP angles, SS and pelvic tilt (PT) on the non-distorted anteroposterior (AP) and lateral digitally reconstructed radiography (DRR) images in supine position (with CT scans) and AP and lateral X-ray images in standing position (with EOS X-ray machine [EOS imaging, Paris, France]) by using of the same EOS software. Our data showed that the pre- and post-operative APP angles correlated with SS and PT in both supine and standing positions. Our non-distorted high quality images and the EOS software revealed these correlations. Therefore, we can still use the APP angles to decide pelvic alignment for patients who undergo total hip arthroplasty (THA). Recent papers demonstrated positional or chronological dramatic changes of the APP angles between pre- and post-operative states in patients who underwent THA. The EOS system will be a powerful tool to investigate these changes of the pelvic alignments


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 58 - 58
1 Oct 2012
Augustine A Deakin A Rowe P Picard F
Full Access

There is increasing interest in the use of image free computer assisted surgery (CAS) in total hip arthroplasty (THA). Many of these systems require the registration of the Anterior Pelvic Plane (APP) via the bony landmarks of the anterior superior iliac spines (ASIS) and pubic tubercles (PT) in order to accurately orient the acetabular cup in terms of anteversion and inclination. Given system accuracies are within 1mm and 1° and clinical validation studies have given accuracy by cup position. However, clinical outcomes contain not only system inaccuracies but also variations due to clinical practice. To understand the effects of variation in landmark acquisition on the identification of the acetabular cup orientation, independent bench testing is required. This requires a phantom model that can represent the range of pelvises, male and female, encountered during THA and introduce deliberate known errors to the acquisition to see the effect on anteversion and inclination angles. However, there is a paucity of information in the literature with regards to these specific pelvic dimensions (pelvic width and height). Therefore the aims of this work were to generate the normal expected range of sizes of the APP for both males and females and to use these to manufacture a phantom model that could be used to assess CT free navigation systems. In the first part of the study 35 human cadavers and 100 pelvic computed tomography (CT) scans were examined. All cadavers had no gross pelvic abnormalities or previous surgeries. Measurements were carried out with cadavers placed in a supine position. The first author made three sets of measurements using a millimeter ruler. Solid steel pins were used to identify the palpated ASISs and PTs. String was tied between the two ASIS pins and the pelvic width measured. The midpoint of the pubic tubercles was taken to be the midpoint of the pubic symphysis. Pelvic height was measured from the midpoint of the ASIS distance (marked on the string) to the midpoint of the PTs. One hundred pelvic CT scans with no bony abnormalities, previous surgery or metal prosthesis (due to artefacts) were obtained retrospectively from the hospital radiological online system (PACS, Kodak). Mimics software (Mimics12 Materialise, Leuven, Belgium) was used to automatically reconstruct three-dimensional (3D) models using the ‘Bone’ thresholding function. This eliminated any soft tissue from the 3D models. The most anterior ASIS and PT points were then identified on the 3D model surface and measurements of distances made. As the software did not allow identification of points not on the model surface it was not possible to directly obtain the midpoint of the ASIS distance. Therefore to obtain the pelvic height measurements the distance between each ASIS and the ipsilateral and contralateral PTs was also measured. The pelvic height was then calculated using trigonometric functions. The ratio of width to height was calculated (ratio > 1 indicating pelvis width greater than pelvis height). Student's t test was used analyse any differences between male and female pelvic measurements with a p<0.05 being statistically significant. Using the results from above an aluminium pelvic phantom model was designed and manufactured. It was machined from a billet of marine grade aluminium alloy using a vertical computer numerical controlled (CNC) milling machine. The top surface represented the APP and sides (which represented the acetabuli) were angled to give anteversion and inclination angles of 20° and 45° respectively. Co-ordinates for ASIS and PT points were given based on the 99% prediction intervals from the pelvic data and additional points were milled to give up to a 20 mm error mediolaterally and also in height. Each co-ordinate point was drilled with a 2.0mm diameter ball-nose cutter to a depth of 1.0mm, these holes designed to accommodate the ball-nosed pointer tip to ensure it remained at the same position in space at all orientations of the pointer. Further to this, known errors in height were introduced using accurately manufactured blocks with similar points milled on the surface to fit a ball-nosed pointer. These blocks could be secured to the top surface of the model using screws. A Perspex base unit with tracker attachments was made to hold the phantom and provide the reference frame. A further support that enables the phantom to also be used in the “lateral” position was manufactured. For the assessment of pelvic size there were 66 females and 69 males, mean age 62.3 years (range from 20 to 99 years). The mean width was 238 mm (SD 20 mm) and mean height was 93 mm (SD 11 mm) with a mean ratio of 2.6 (SD 0.3). There were no statistically significant differences in mean between males and females (p>0.4 in all cases). From this data set the range of APP sizes required to cover 99% of population (width 186 to 290 mm and height 66 to 120 mm) and therefore the measurements for the model were generated. The manufactured model can be used to give the range of pelvis sizes from 170mm to 290mm in width and 60mm to 120mm in height and also to add up to 20 mm of error in palpation of each of the ASISs and PT. This study generated APP sizes to cover 99% of the general population over a wide age range. It illustrated that a single pelvic model would fit both sexes. The model allows the determination of the effects of changes of the pelvic dimensions may have on the acetabular orientation measured on an image free CAS system including the assessment of point acquisition and deliberate errors. The model has been successfully used in preliminary testing and can be used to assess any CT free system


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 81 - 81
1 Oct 2012
Lazennec J Rousseau M Rangel A Gozalbes V Chabane S Brusson A Picard C Catonne Y
Full Access

Background. Recent literature points out the potential interest of standing and sitting X-rays for the evaluation of THA patients. The accuracy of the anterior pelvic plane measures is questionable due to the variations in the quality of lateral standing and sitting X-rays. The EOS® (EOS imaging, Paris, France) is an innovative slot-scanning radiograph system allowing the acquisition of radiograph images while the patient is in weightbearing position with less irradiation than standard imagers. This study reports the “functionnal” positions of a 150 THA cohort, including the lateral orientation of the cups. Methods. The following parameters were measured: sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI) and anterior pelvic plane (APP) sagittal inclination (ASI), frontal inclination (AFI) and planar anteversion (ANT). Irradiation doses were calculated in standing and sitting acquisitions. Variations of sagittal orientation of the cup were measured on lateral standing and sitting images. Descriptive and multivariate analysis were performed for the different parameters studied. Results. The mean doses for full body were 0,80 mGy ± 0,13 for standing position and 0,94 mGy ± 0,25 for sitting position. The mean value for PI was 55,8° ± 11,4. The mean values standing position were 39,01° ± 9,9 for SS, 17,23° ± 10,2 for PT, and 0,74° ± 8,4 for APP. The mean values were 46,36° ± 9,8 for AFI, 39,49° ± 15,1 for ASI and 22,09° ± 11,1 for ANT. In sitting position, the mean values were 20,87° ± 10,2 for SS, 35,37° ± 13,1 for PT and 21,13° ± 11,2 for APP. The mean values were 56,41° ± 12,3 for AFI, 51,71° ± 14,7 for ASI and 33,45° ± 12,9 for ANT. Conclusions and Clinical Relevance. Unexpected variations of the anterior pelvic plane can be observed as well as the influence of pelvic incidence on pelvic orientation. The EOS® imaging system provides new informations regarding the pelvis functionnal anatomy in THA patients with potential applications for the study of unstable cases and wear phenomenons


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2013
Davis E Smith G Prakash K Schubert M Wegner M Martin H
Full Access

Optimum component orientation in hip arthroplasty is vital in an effort to avoid dislocation and excessive wear. Computer navigation in hip arthroplasty surgery has the potential to improve accuracy in component placement. However, it has been slow to gain widespread acceptance. One of the major concerns surgeons have is the difficulty in registering pelvic landmarks. We used a retrospective series of 200 pelvic CT scans to validate a new methodology to construct the anterior pelvic plane, using anatomical landmarks that are easily palpated with the patient positioned and draped in the lateral decubitus position. Analysis of the scans was also made in an effort to stimulate the inaccuracies of obtaining the anterior pelvic plane through soft tissue. When comparing the new registration methodology to the anterior pelvic plane, the error in acetabular component inclination was 0.69° (SD 2.96) and anteversion was 1.17° (SD 3.53). This compares favourably to the error in acetabular component inclination of −0.92° (SD 0.26) and anteversion of −5.24° (SD 2.09) when the anterior pelvic plane is registered through soft tissue. The data also shows that using the new registration method in more than 99.6% of cases the acetabular placement is within the safe zone as described by Lewinnek. This study appears to show that through the identification of anatomical constants we are able to construct the anterior pelvic plane from anatomical landmarks that are easily palpable in the lateral decubitus position during hip arthroplasty. These landmarks also appear to be more accurate in obese patients than registering the anterior pelvic plane


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 7 - 7
1 Sep 2012
Argenson J
Full Access

Background. Acetabular component malpositioning during hip arthroplasty increases the risk of dislocation, reduces range of motion and can be responsible for early wear and loosening. There have been numerous reports on the optimal orientation of the acetabular component in total hip arthroplasty (THA). Lewinnek et al recommended an abduction angle of 40°±10° and an anteversion of 15°±10° for cup alignment in THA. The purpose of the in vivo study was to compare computer assisted acetabular component insertion versus free-hand placement. The goal of the cadaveric study was to compare in vitro a new tool using ultrasound with the standard percutaneous manual methods for the anterior pelvic plane registration during computer-assisted total hip arthroplasty. Methods. A controlled randomized matched prospective study was performed in two groups of 30 patients. In the first group, cup positioning was assisted by an imageless computer assisted orthopaedics system, based on Bone Morphingâ (CAOS+ group). In the control group, a free-hand cup placement was performed (CAOS- group). A same cementless cup has been used in the two groups. All the patients were operated by the same surgeon through an anterolateral approach. Cup anteversion and abduction angles were measured on three-dimensional CT-scan reconstruction postoperatively for each patient by an independent observer with special cup evaluation software. In vitro, four clinicians were asked to register ten times in a randomly change order the anterior pelvic plane landmarks in four different acquisition conditions: a cutaneous acquisition, a draped cutaneous acquisition, ultrasound acquisition and a direct bone acquisition on two cadavers. The mean and standard deviation of error for each anterior pelvic plane acquisition method were expressed as rotation and tilt about the relevant reference plane and compared. Results. There were 16 males and 14 females in each group, the mean age was 62 years (24–80) and mean Body Mass Index was 25. Mean additional time of the CAOS procedure was 12 minutes (8–20). Intraoperative subjective agreement of the surgeon with the computer guidance system demonstrated a high correlation in 23 cases, weak correlation in 6 cases and a poor correlation in 1 case. There were no statistical differences between the CAOS+ group and the CAOS- group regarding means of the abduction and anteversion angles but a significant heterogeneity of variances, with the lowest variations in the CAOS+ group. In vitro, for the draped cutaneous acquisition method the mean of the rotation and tilt around the reference plane for the two cadavers and the four operators were respectively 3.8 °±0.21° and 19.25 °±4.1°, for the for the ultrasound acquisition method respectively 2.8 °±0.21° and 6.2 °± 4.1°, for the cutaneous acquisition method respectively 2 °±0.21° and 16.2 °±4.1°. Discussion. The in vivo study has shown the accuracy of cup positioning using a CT-free navigation system in a prospective randomized controled protocol. Based on the number of the cadaveric study, ultrasound acquisition of the anterior pelvic plane is more accurate, reliable and reproducible in vitro than actual cutaneous digitization


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 9 - 9
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Jones E Bruce WJM Walter WL
Full Access

In 2021, Vigdorchik et al. published a large multicentre study validating their simple Hip-Spine Classification for determining patient-specific acetabular component positioning in total hip arthroplasty (THA). The purpose of our study was to apply this Hip-Spine Classification to a sample of Australian patients undergoing THA surgery to determine the local acetabular component positioning requirements. Additionally, we propose a modified algorithm for adjusting cup anteversion requirements. 790 patients who underwent THA surgery between January 2021 and June 2022 were assessed for anterior pelvic plane tilt (APPt) and sacral slope (SS) in standing and relaxed seated positions and categorized according to their spinal stiffness and flatback deformity. Spinal stiffness was measured using pelvic mobility (PM); the ΔSS between standing and relaxed seated. Flatback deformity was defined by APPt <-13° in standing. As in Vigdorchik et al., PM of <10° was considered a stiff spine. For our algorithm, PM of <20° indicated the need for increased cup anteversion. Using this approach, patient-specific cup anteversion is increased by 1° for every degree the patient's PM is <20°. According to the Vigdorchik simple Hip-Spine classification groups, we found: 73% Group 1A, 19% Group 1B, 5% Group 2A, and 3% Group 2B. Therefore, under this classification, 27% of Australian THA patients would have an elevated risk of dislocation due to spinal deformity and/or stiffness. Under our modified definition, 52% patients would require increased cup anteversion to address spinal stiffness. The Hip-Spine Classification is a simple algorithm that has been shown to indicate to surgeons when adjustments to acetabular cup anteversion are required to account for spinal stiffness or flatback deformity. We investigated this algorithm in an Australian population of patients undergoing THA and propose a modified approach: increasing cup anteversion by 1° for every degree the patient's PM is <20°


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 115 - 115
23 Feb 2023
Chai Y Boudali A Farey J Walter W
Full Access

Pelvic tilt (PT) is always described as the pelvic orientation along the transverse axis, yet four PT definitions were established based on different radiographic landmarks: anterior pelvic plane (PT. a. ), the centres of femoral heads and sacral plate (PT. m. ), pelvic outlet (PT. h. ), and sacral slope (SS). These landmarks quantify a similar concept, yet understanding of their relationships is lacking. Some studies referred to the words “pelvic tilt” for horizontal comparisons, but their PT definitions might differ. There is a demand for understanding their correlations and differences for education and research purposes. This study recruited 105 sagittal pelvic radiographs (68 males and 37 females) from a single clinic awaiting their hip surgeries. Hip hardware and spine pathologies were examined for sub-group analysis. Two observers annotated four PTs in a gender-dependent manner and repeated it after six months. The linear regression model and intraclass correlation coefficient (ICC) were applied with a 95% significance interval. The SS showed significant gender differences and the lowest correlations to the other parameters in the male group (-0.3< r <0.2). The correlations of SS in scoliosis (n = 7) and hip implant (female, n = 18) groups were statistically different, yet the sample sizes were too small. PT. m. demonstrated very strong correlation to PT. h. (r > 0.9) under the linear model PT. m. = 0.951 × PT. h. - 68.284. The PT. m. and PT. h. are interchangeable under a simple linear regression model, which enables study comparisons between them. In the male group, SS is more of a personalised spinal landmark independent of the pelvic anatomy. Female patients with hip implant may have more static spinopelvic relationships following a certain pattern, yet a deeper study using a larger dataset is required. The understanding of different PTs improves anatomical education


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 34 - 34
10 Feb 2023
Farey J Chai Y Xu J Sadeghpour A Marsden-Jones D Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems have the potential to improve acetabular cup position in total hip arthroplasty (THA), thereby reducing the risk of revision surgery. This study aimed to evaluate the accuracy of three alternate registration planes in the supine surgical position generated using imageless navigation for patients undergoing THA via the direct anterior approach (DAA). Fifty-one participants who underwent a primary THA for osteoarthritis were assessed in the supine position using both optical and inertial sensor imageless navigation systems. Three registration planes were recorded: the anterior pelvic plane (APP) method, the anterior superior iliac spines (ASIS) functional method, and the Table Tilt (TT) functional method. Post-operative acetabular cup position was assessed using CT scans and converted to radiographic inclination and anteversion. Two repeated measures analysis of variance (ANOVA) and Bland-Altman plots were used to assess errors and agreement of the final cup position. For inclination, the mean absolute error was lower using the TT functional method (2.4°±1.7°) than the ASIS functional method (2.8°±1.7°, ρ = .17), and the ASIS anatomic method (3.7°±2.1, ρ < .001). For anteversion, the mean absolute error was significantly lower for the TT functional method (2.4°±1.8°) than the ASIS functional method (3.9°±3.2°, ρ = .005), and the ASIS anatomic method (9.1°±6.2°, ρ < .001). All measurements were within ± 10° for the TT method, but not the ASIS functional or APP methods. A functional registration plane is preferable to an anatomic reference plane to measure intra-operative acetabular cup inclination and anteversion accurately. Accuracy may be further improved by registering patient location using their position on the operating table rather than anatomic landmarks, particularly if a tighter target window of ± 5° is desired


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 67 - 67
1 Jan 2016
Thomas A Murphy S Kowal JH
Full Access

Introduction. Studies show that cup malpositioning using conventional techniques occurs in 50 to 74% of cases defined. Assessment of the utility of improved methods of placing acetabular components depends upon the accuracy of the method of measuring component positioning postoperatively. The current study reports on our preliminary experience assessing the accuracy of EOS images and application specific software to assess cup orientation as compared to CT. Methods. Eighteen patients with eighteen unilateral THA had pre-operative EOS images were obtained for preoperative assessment of leg-length difference and standing pelvic tilt. All of these patients also had preoperative CT imaging for surgical navigation of cup placement. This allows us to compare cup orientation as measured by CT to cup orientation as measured using the EOS images. Application specific software modules were developed to measure cup orientation using both CT and EOS images (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). Using CT, cup orientation was determined by identifying Anterior Pelvic Plane coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module allows for creation of a plane parallel with the opening plane of the acetabulum and subsequent calculation of plane orientation in the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. Using EOS DICOM images, spatial information from the images were used to reconstruct the fan beam projection model. Each image pair is positioned inside this projection model. Anterior Pelvic Plane coordinate points are digitized on each image and back-projected to the fan beam source. Corresponding beams are then used to compute the 3D intersection points defining the 3D position and orientation of the Anterior Pelvic Plane. Ellipses with adjustable radii were then used to define the cup border in each EOS image. By respecting the fan beam projection model, 3D planes defining the projected normal of the ellipse in each image are computed. 3D implant normal was estimated by determining 3D plane intersection lines for each image pair. Implant center points are defined by using the back-projected and intersected ellipse center beams in the image pairs (Figure 1). Results. The results are shown in Figure 2. The mean anteversion error was −0.9 degrees (SD 4.1, range −6.9 to 10.3). The mean inclination error was 1.8 (SD 2.1, range −2.9 to 8.6). All three cups with errors greater than 7 degrees were in cups with 40 or more degrees of anteversion. Discussion and Conclusion. The current study, while very preliminary, demonstrates the potential that EOS images can be used to measure cup orientation with a reasonable degree of accuracy. Accurate determination of cup orientation appears to be more challenging in cups with higher anteversion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 110 - 110
1 Mar 2017
Reitman R Pierrepont J McMahon S Walter L Shimmin A Kerzhner E
Full Access

Introduction. The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Methodology. Pre-operatively, 1,517 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (point when patients initiate rising from a seated position). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography. Results. The mean supine pelvic tilt was 4.2°, with a range of −20.5° to 24.5°. The mean standing pelvic tilt was −1.3°, with a range of −30.2° to 27.9°. Mean pelvic tilt in the flexed seated position was 0.6°, with a range of −42.0° to 41.3°. The mean absolute change from supine to stand, and supine to flexed seated was 6.0° (SD = 3.8°) and 10.7° (SD = 8.1°) respectively. 6% of patients rotated posteriorly by more than 13° from supine to stand, consequently putting them at risk of excessive functional anteversion in extension. 11% of patients rotated anteriorly by more than 13° from supine to seated, consequently retroverting their cup and putting them at risk in flexion. Therefore, 17% of patients had sagittal pelvic rotations that could lead to functional cup malorientation even with a supposedly ideal orientation of 40°/20°. Factoring in an intraoperative delivery error of ± 5° extends this risk to 51% of patients. Conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. 17% of patients had sagittal pelvic rotations that could lead to functional cup malorientation in functional flexion or extension, even with an apparently perfectly-orientated component. This number extended to 51% when an intra-operative delivery error of ± 5° was considered. Planning and measurement of cup placement in the supine position can lead to large discrepancies in orientation during more functionally relevant postures. Optimal cup orientation is likely patient-specific and requires an evaluation of functional pelvic dynamics to pre-operatively determine the target angles


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 30 - 30
1 May 2016
Pierrepont J Walter L Miles B Marel E Baré J Solomon M McMahon S Shimmin A
Full Access

Introduction. The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Methodology. Pre-operatively, 90 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair), Fig 1. Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography, Fig 2. Results. The mean standing pelvic tilt was −2.1° ± 7.4°, with a range of −15.2° – 15.3°. Mean supine pelvic tilt was 4.1° ± 5.5°, with a range of −9.7° – 17.9°. Mean pelvic tilt in the flexed seated position was −1.8° ± 14.1°, with a range of −31.8° – 29.1°, Fig 3. The mean absolute change from supine to stand, and stand to flexed seated was 6.9° ± 4.1° and 11.9° ± 7.9° respectively. 86.6% of patients had a more anteriorly tilted pelvis when supine than standing. 52.2% of patients had a more anteriorly tilted pelvis when seated than standing. Conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. Planning and measurement of cup placement in the supine position can lead to large discrepancies in orientation during more functionally relevant postures. As a result of the functional changes in pelvic position, cup orientations during dislocation and edge-loading events are likely to be significantly different to that measured from standard CT and radiographs. Optimal cup orientation is likely patient-specific and requires an evaluation of functional pelvic dynamics to pre-operatively determine the target angles


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 104 - 104
1 Feb 2017
Lazennec J Thauront F Folinais D Pour A
Full Access

Introduction. Optimal implant position is the important factor in the hip stability after THA. Both the acetabular and femoral implants are placed in anteversion. While most hip dislocations occur either in standing position or when the hip is flexed, preoperative hip anatomy and postoperative implants position are commonly measured in supine position with CT scan. The isolated and combined anteversions of femoral and acetabular components have been reported in the literature. The conclusions are questionable as the reference planes are not consistent: femoral anteversion is measured according to the distal femoral condyles plane (DFCP) and acetabulum orientation in the anterior pelvic plane (APP)). The EOS imaging system allows combined measurements for standing position in the “anatomical” reference plane or anterior pelvic plane (APP) or in the patient “functional” plane (PFP) defined as the horizontal plane passing through both femoral heads. The femoral anteversion can also be measured conventionally according to the DFCP. The objective of the study was to determine the preoperative and postoperative acetabular, femoral and combined hip anteversions, sacral slope, pelvic incidence and pelvic tilt in patients who undergo primary THA. Material and Methods. The preoperative and postoperative 3D EOS images were assessed in 62 patients (66 hips). None of these patients had spine or lower extremity surgery other than THA surgery in between the 2 EOS assessments. None had dislocation within the follow up time period. Results. Pelvic values. The preoperative sacral slope was 42.4°(11° to 76°) as compared to the postoperative sacral slope (40.3°, −4° to 64°)(p=0.014). The preoperative pelvic tilt was 15.3° (−10° to 44°) as compared to the postoperative tilt (17.2°, −6° to 47°)(p=0.008). The preoperative pelvic incidence was 57.7°(34° to 93°) and globally unchanged as compared to the postoperative incidence (57.5°, 33° to 79°)(p=0.8). Acetabular values. Surgeons increased the anteversion according to the APP by an average of 12.6°(−13° to 53°)(p<0.001). Acetabular anteversion was increased by 14.3° in the PFP (−11° to 51°)(p<0.001). Femoral values. In the DFCP, preoperative neck anteversion was decreased postoperatively by an average of −3,2°(−48° to 33°)(p=0,0942). In the PFP, preoperative neck anteversion was decreased postoperatively by an average of −6,3°(−47° to 17°)(p<0,001). Combined values. According to the classical methods (acetabular orientation in the APP and femoral anteversion in the DFCP), mean preoperative combined anteversion was 36.1° (4° to 86°) and was increased postoperatively to 45.5°(−12° to 98°)(p=0.0003). According to the PFP, mean preoperative combined anteversion was 30,7°(5° to 68°) and was increased postoperatively to 38,8°(−10° to 72°)(p=0,0001). Conclusion. This study reports two methods for the measurement of acetabular and femoral anteversion, “anatomical” according to the APP and DFCP and “functional” according to the PFP. Surgeons tend to increase the anteversion of the acetabular implant and to decrease femoral anteversion during the surgery. The trend is the same for postoperative evolution of values using the “anatomical” or the “functional” methods but numerical discrepancies are explained by significant APP orientation changes. The assessment of the true combined anteversion provides new perspectives to optimize our understanding of THA stability and function


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 37 - 37
1 Mar 2013
Ul Islam S Dandachli W Richards R Hall-Craggs M Witt J
Full Access

The position of the pelvis has been shown to influence acetabular orientation. However there have been no studies quantifying that effect on the native acetabulum. Our aims were to investigate whether it is possible to quantify the relationship between pelvic tilt and acetabular orientation in native hips, and whether pelvic tilt affects acetabular cover of the femoral head. Computerized tomography scans of 93 hips (36 normal, 31 dysplastic and 26 with acetabular retroversion) were analyzed. We used a CT technique that allows standardised three-dimensional (3D) analysis of acetabular inclination and anteversion and calculation of femoral head cover in relation to the anterior pelvic plane and at different degrees of forward and backward tilt. Acetabular anteversion, inclination and cover of the femoral head were measured at pelvic tilt angles ranging from −20° to 20° in relation to the anterior pelvic plane using 5° increments. The effect of pelvic tilt on version was similar in the normal, dysplastic and retroverted groups, with a drop in anteversion ranging from 2.5° to 5° for every 5° of forward tilt. The effect on inclination was less marked and varied among the three groups. Pelvic tilt increased femoral head cover in both normal and dysplastic hips. The effect was less marked, and tended to be negligible at higher positive tilt angles, in the retroverted group. This study has provided benchmark data on how pelvic tilt affects various acetabular parameters which in turn may be helpful in promoting greater understanding of acetabular abnormalities and how pelvic tilt affects the interpretation of pelvic radiographs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 19 - 19
1 Jan 2016
Marel E Walter L Solomon M Shimmin A Pierrepont J
Full Access

Achieving optimal acetabular cup orientation in Total Hip Replacement (THR) remains one of the most difficult challenges in THR surgery (AAOR 2013) but very little has been added to useful understanding since Lewinnek published recommendations in 1978. This is largely due to difficulties of analysis in functional positions. The pelvis is not a static reference but rotates especially in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic rotation have a substantial effect on the functional orientation of the acetabulum, not appreciated on standard radiographs [Fig1]. Studies of groups of individuals have found the mean pelvic rotation in the sagittal plane is small but large individual variations commonly occur. Posterior rotation, with sitting, increases the functional arc of the hip and is protective of a THR in regards to both edge loading and risk of dislocation. Conversely Anterior rotation, with sitting, is potentially hazardous. We developed a protocol using three functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography. Proprietary software (Optimized Ortho, Sydney) based on Rigid Body Dynamics then modelled the patients’ dynamics through their functional range producing a patient-specific simulation which also calculates the magnitude and direction of the dynamic force at the hip and traces the contact area between prosthetic head/liner onto a polar plot of the articulating surface, Fig 2. Given prosthesis specific information edge-loading can then be predicted based on the measured distance of the contact patch to the edge of the acetabular liner. Delivery of desired orientation at surgery is facilitated by use of a solid 3D printed model of the acetabulum along with a patient specific guide which fits the model and the intra-operative acetabulum (with cartilage but not osteophytes removed) - an incorporated laser pointer then marks a reference point for the reamer and cup inserter to replicate the chosen orientation. Results and conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. Spinal pathology is a potent “driver” of pelvic sagittal rotation, usually unrecognised on standard radiographs. Pre-operative patient assessment can identify potential orientation problems and even suitability for hard on hard bearings. Optimal cup orientation is likely patient-specific and requires an evaluation of functional pelvic dynamics to pre-operatively determine the target angles. Post-operatively this technique can identify patient and implant factors likely to be causing edge loading leading to early failure in metal on metal bearings or squeaking in ceramic on ceramic bearings


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 45 - 45
1 Feb 2021
Howarth W Dannenbaum J Murphy S
Full Access

Introduction. Lumbar spine fusion in patients undergoing THA (total hip arthroplasty) is a known risk factor for hip dislocation with some studies showing a 400% increased incidence compared to the overall THA population. Reduced spine flexibility can effectively narrow the cup anteversion safe zone while alterations in pelvic tilt can alter the center of the anteversion safe zone. The use of precision cup alignment technology combined with patient-specific cup alignment goals based on preoperative assessment has been suggested as a method of addressing this problem. The current study assess the dislocation rate of THA patients with stiff or fused lumbar spines treated using surgical navigation with patient-specific cup orientation goals. Methods. Seventy-five THA were performed in 54 patients with a diagnosis of lumbar fusion, lumbar disc replacement, and scoliosis with Cobb angles greater than 40 degrees were treated by the senior author (SM) as part of a prospective, non-randomized study of surgical navigation in total hip arthroplasty. All patients were treated using a smart mechanical navigation tool for cup alignment (HipXpert System, Surgical Planning Associates, Inc., Boston, MA). Cup orientation goals were set on a patient-specific basis using supine pelvic tilt as measured using CT. Patients with increased pelvic tilt had a goal for increased cup anteversion and patients with decreased pelvic tilt had a goal for decreased cup anteversion (relative to the anterior pelvic plane coordinate system). Each patient's more recent outpatient records were assessed for history of dislocation, instability, mechanical symptoms, decreased range of motion or progressive pain. Additionally, last clinic radiographs were reviewed to confirm lumbar pathology in the form of spinal surgical hardware. Results. Seventy-five total hip arthroplasties with stiff lumbar spine were reviewed with and average follow up of 6.04 years. The average number of levels of lumbar fusion was 2.3 levels. Since the most recent follow up on all patients in this cohort no hip dislocations had occurred. Discussion and Conclusion. Fusion or stiffness of the lumbar spine is a known risk factor for instability following elective THA. The current study demonstrates that patient-specific planning of cup placement taking abnormal pelvic tilt into consideration combined with the use of accurate intra-operative cup alignment technology can be used to address this problem


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 110 - 110
1 Feb 2020
Samuel L Warren J Rabin J Acuna A Shuster A Patterson J Mont M Brooks P
Full Access

Background. Proper positioning of the acetabular component is critical for prevention of dislocation and excessive wear for total hip arthroplasty (THA) and hip resurfacing. Consideration of preoperative pelvic tilt (PT) may aid in acetabular component placement. The purpose of this study was to investigate how PT changes after hip resurfacing, via pre and post-operative radiographic analysis of anterior pelvic plane (APP), and whether radiographic analysis of the APP is a reproducible method for evaluating PT in resurfaced hips. Methods. A consecutive group of 228 patients from a single surgeon who had hip resurfacing were evaluated. We obtained x-rays from an institutional database for these patients who had their surgeries between January 1. st. , 2014 to December 31. st. , 2016. Pelvic tilt (PT) was measured by two observers before and after resurfacing utilizing a standardized radiographic technique. Correlation coefficients were calculated for PT measurements between observers, and pre- and post-surgery. Results. Mean preoperative PT was 0.7° (SD ± 6.6°) and 0.4° (SD ± 6.1°). Mean post-operative PT was −1.2° (SD ± 6.2°) and −1.2° (SD ± 6.0°). Correlations between pre and post-operative PT were R=.829 (p<.001) and R = .837 (p<.001). 80.6% to 82.5% of patients had variation <5°, 15.8% to 17.8% had variation between 5–10°, and 1.6 to1.8% had a variation >10°. Intraclass correlation coefficients between observers were R = .987 (95% CI, .963–.981; p<.001) preoperatively, and R=.985 (95 CI, .963–.981; p<.001) postoperatively. (See Fig 1). Conclusion. After hip resurfacing arthroplasty, the mean difference between preoperative and postoperative PT was less than 1°. These results suggest that near-native PT is maintained with consistency after hip resurfacing, a finding that is variable following THA. Since variations in PT affect functional acetabular position, these results support the use of pelvic tilt measurement in pre-operative planning for hip arthroplasty with a high degree of inter-observer reliability. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 52 - 52
1 Feb 2020
Lazennec J Kim Y Caron R Folinais D Pour AE
Full Access

Introduction. Most of studies on Total Hip Arthroplasty (THA) are focused on acetabular cup orientation. Even though the literature suggests that femoral anteversion and combined anteversion have a clinical impact on THA stability, there are not many reports on these parameters. Combined anteversion can be considered morphologically as the addition of anatomical acetabular and femoral anteversions (Anatomical Combined Anatomical Anteversion ACA). It is also possible to evaluate the Combined Functional Anteversion (CFA) generated by the relative functional position of femoral and acetabular implants while standing. This preliminary study is focused on the comparison of the anatomical and functional data in asymptomatic THA patients. Material and methods. 50 asymptomatic unilateral THA patients (21 short stems and 29 standard stems) have been enrolled. All patients underwent an EOS low dose evaluation in standing position. SterEOS software was used for the 3D measurements of cup and femur orientation. Cup anatomical anteversion (CAA) was computed as the cup anteversion in axial plane perpendicular to the Anterior Pelvic Plane. Femoral anatomical anteversion (FAA) was computed as the angle between the femoral neck axis and the posterior femoral condyles in a plane perpendicular to femoral mechanical axis. Functional anteversions for the cup (CFA) and femur (FFA) were measured in the horizontal axial patient plane in standing position. Both anatomical and functional cumulative anteversions were calculated as a sum. All 3D measures were evaluated and compared for the repeatability and reproducibility. Statistical analysis used Mann-Whitney U-test considering the non-normal distribution of data and the short number of patients (<30 for each group). Results. Functional cumulative anteversion was significantly higher than anatomical cumulative anteversion for all groups (p<0.05). No significant difference could be noted between the cases according to the use of short or standard stems. Conclusion. This study shows the difference of functional implant orientation as compared to the anatomical measurements. This preliminary study has limitations. First the limited sample of patients. Then this series only includes asymptomatic subjects. Nevertheless, this work focused on the feasibility of the measurements shows the potential interest of a functional analysis of cumulated anteversion. Standing position influences the relative position of THA implants according to the frontal and sagittal orientation of the pelvis. The relevance of these functional measurements in instability cases must be demonstrated, especially in patients with anterior subluxation in standing position which is potentially associated with pelvic adaptative extension. Further studies are needed for the feasibility of measurements on EOS images in sitting position and their analysis in case of instability. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 24 - 24
1 Feb 2020
Walter L Madurawe C Gu Y Pierrepont J
Full Access

The functional pelvic tilt when standing and sitting forward of 7402 cases on the OPS, Optimized Ortho, Australia Data Base were reviewed. All patients had undergone lateral radiographs when standing simulating extension of the hip, and sitting forward when the hip is near full flexion. Pelvic tilt was measured as the angle of the Anterior Pelvic Plane to the vertical Sagittal Plane, rotation anteriorly being given a positive value. Pelvises that had rotated more than 13 degrees anteriorly (+ve) when sitting forward or posteriorly (-ve) when standing were considered to place the hip at increased risk of dislocation or edge loading when flexed or extending respectively. This degree of rotation has the effect of changing the acetabular version by approximately10. 0. Most safe zones that have been described have given a range of anteversion of 20. 0. as safe. A change of 10. 0. would potentially place the acetabular orientation outside this range. Further, clinical studies have supported this concept. All lateral radiographs were reviewed to confirm that 281 had undergone instrumented spinal fusion at some level between T12 and S1. There was a large variability in the number and the levels arthrodesed. The range of pelvic mobility in the non-arthrodesed group in extension was −37. 0. to 31. 0. (mean −0.9. 0. , Standard deviation 7.49) and in flexed position was −70. 0. to 49. 0. (mean −1.9. 0. , Standard deviation 14.01). For the group with any fusion the range of pelvic tilt in extension was −31. 0. to 22. 0. (mean −4. 0. , Standard deviation 8.21) and flexed −32. 0. to 46. 0. (mean 4.4. 0. , Standard deviation 13.79). Of the 7121 cases without instrumented fusion, 15.5% were considered to be at risk when in flexion and 6.1% when extended. The risk for those with any fusion was approximately doubled in both flexion and extension. Further, those with extensive arthrodesis from T12 to S1 had a range of pelvic tilts similar to the non-fused group, although they had a significantly higher percentage of cases in the ‘at risk’ zones. The proportion of the cases in the ‘at risk’ zones decreased progressively as the arthrodesed levels moved from L5/S1 to the upper lumbar spine, and with decreasing number of levels fused. Conclusion. Spinal fusion is not just one group as there are many combinations of different levels fused. Patients with instrumented spinal fusions do have a proportionately high risk of failure of their THR than the majority of cases with no instrumentation, though the risk varies significantly with the number of levels and actual levels arthrodesed. Further approximately 21% of cases with no spinal fusion have functional pelvic movements that would potentially place them ‘at risk’ of edge loading or dislocation. For any figures or tables, please contact authors directly