Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A ROBUST FLUOROSCOPIC METHOD FOR REGISTERING THE ANTERIOR PELVIC PLANE

International Society for Computer Assisted Orthopaedic Surgery (CAOS) - 15th Annual Meeting



Abstract

The anterior pelvic plane (APP) is used as a reference in various pelvic surgeries in orthopaedics. Current methods for identifying the APP are limited in accuracy and efficiency. A quick and accurate method for registering the pelvis orientation can be very useful. Previously, we have introduced a Tracked C-arm (TC-arm) system for use with any C-arm fluoroscopy for producing spatially calibrated imaging views. This system has been tried for estimating the APP. Early results, however, has shown limited repeatability in identifying the anterior superior iliac spine (ASIS) landmarks. This study improves the previous algorithms for a robust registration of the APP.

A Sawbone pelvis was used, and its APP was marked by radio-dense ball-bearings. In the new addition, the TC-arm allowed segmenting the ASIS in an interactive user-interface by taking guidance from a reference line tangential to the ipsilateral pubic tubercle for marking the most anterior point on the iliac-crest. The imaging and analysis was repeated 10 times. The results were compared to reconstruction of the fiducial markers placed on the true APP.

Accuracy of 1.4° and 4.4° were found for registering the pelvic tilt and rotation, correspondingly. The overall accuracy and precision of registration of the APP were 4.7° and 0.82°, correspondingly. The new method showed 7.5 times improvement in repeatability of measuring the pelvic tilt (SD<0.4°) compared to the previous fluoroscopic methods. This technique addresses an important challenge in estimation of the pelvic bone which is crucial for reliable device placement and producing standard radiographic views in surgery.