Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 74 - 74
7 Aug 2023
Alabdullah M Liu A Xie S
Full Access

Abstract. Rehabilitation exercise is critical for patients’ recovery after knee injury or post-surgery. Unfortunately, adherence to exercise is low due to a lack of positive feedback and poor self-motivation. Therefore, it is crucial to monitor their progress and provide supervision. Inertial measurement unit (IMUs) based sensing technology can provide remote patient monitoring functions. However, most current solutions only measure the range of knee motion in one degree of freedom. The current IMUs estimate the orientation-angle based on the integrated raw data, which might lack accuracy in measuring knee motion. This study aims to develop an IMU-based sensing system using the absolute measured orientation-angle to provide more accurate comprehensive monitoring by measuring the knee rotational angles. An IMU sensing system monitoring the knee joint angles, flexion/extension (FE), adduction/abduction (AA), and internal/external (IE) was developed. The accuracy and reliability of FE measurements were validated in human participants during squat exercise using measures including root mean square error (RMSE) and correlation coefficient. The RMSE of the three knee angles (FE, AA, and IE) were 0.82°, 0.26°, and 0.11°, which are acceptable for assessing knee motion. The FE measurement was validated in human participants and showed excellent accuracy (correlation coefficient of 0.99°). Further validation of AA and IE in human participants is underway. The sensing system showed the capability to estimate three knee rotation angles (FE, AA, and IE). It showed the potential to provide comprehensive continuous monitoring for knee rehabilitation exercises, which can also be used as a clinical assessment tool


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims

We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry.

Methods

In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 51 - 51
1 Oct 2018
Simon JC Della Valle CJ Wimmer MA Jacobs JJ
Full Access

Introduction. This study explores whether subjects with bicruciate retaining TKRs (BiCR) have more normal knee biomechanics during level walking and stair ascent than subjects with posterior cruciate retaining TKRs (PCR). Due to anterior cruciate ligament (ACL) preservation, we expect BiCR subjects will not show the reduced flexion and altered muscle activation patterns characteristic of persons with TKRs. Methods. Motion and electromyography (EMG) data were collected during level walking and stair climbing for 16 BiCR subjects (4/12 m/f, 65±3 years, 30.7±7.0 BMI, 8/8 R/L), 17 PCR subjects (2/15 m/f, 65±7 years, 30.4±5.1 BMI, 7/10 R/L), and 17 elderly healthy control subjects (8/9 m/f, 55±10 years, 25.8±4.0 BMI, 10/7 R/L), using the point cluster marker set. Surface EMG electrodes were placed on the vastus medialis obliquus (VMO), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST) muscles. EMG data are reported as percent relative voluntary contraction (%RVC), normalized to the average peak EMG signals during level walking. Statistical nonparametric mapping was used for waveform analysis. Results. Both TKR groups were older, and PCR subjects had higher BMI than control subjects (p≤0.020). The BiCR group walked slower and with shorter stride lengths than controls (p≤0.012). During level walking, BiCR subjects had less knee extension and posterior tibial displacement than controls (95–98%, 96–100% gait cycle, p=0.003, 0.001). PCR subjects showed higher flexion mid-stance than controls (36–44% gait cycle, p=0.001) and more external rotation (66–69% gait cycle, p=0.003). Both TKR groups had smaller extension moment peaks (PCR 5, 59–75, 96%, BiCR 61–78, 95–97% stance, p≤0.007, 0.003) than the control group. The BiCR group had smaller adduction and external rotation moment peaks (20–24%, 10–18% stance, p=0.003, 0.001) compared with controls. During stair climbing, BiCR subjects displayed more external tibial rotation (4–16% stance), more knee abduction (36–52% stance), and a lower adduction moment peak (24–34% stance) compared to healthy controls (p≤0.005). TKR subjects from both groups showed lower flexion moment peaks than controls (PCR 24–35%, BiCR 24–28% stance, p≤0.001, 0.004). For EMG, PCR subjects had more BF activity during stair ascent versus level walking than healthy subjects (56–74% stance, p≤0.001). Discussion. BiCR and PCR showed more similarities than expected. Both had altered kinematics and kinetics compared to controls, suggesting some intrinsic extensor mechanism weakness, possibly an aftereffect of osteoarthritis. The EMG results agreed accordingly, as both TKR groups showed (non-significant) decreased quadriceps activity during stair climbing. Interestingly, PCR subjects also had more BF activity during stair than healthy controls, a trend that is common for both TKR subjects and people with ACL deficiency. On the other hand, although BiCR subjects were significantly more externally rotated in early stance phase for stair climbing, their rotation patterns began to align more closely to those of the healthy control subjects at lower flexion angles where the ACL should come into play. In conclusion, ACL retention in TKRs does not correct the extensor mechanism deficits commonly found in TKR patients, although it has some effect on secondary knee kinematics and hamstring muscle activity


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1505 - 1513
1 Sep 2021
Stockton DJ Schmidt AM Yung A Desrochers J Zhang H Masri BA Wilson DR

Aims

Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters.

Methods

An upright, open MRI was used to directly measure tibiofemoral contact area, centroid location, and alignment in 18 individuals with unilateral ACL rupture within the last five years. Eight participants had been treated nonoperatively and ten had ACL reconstruction performed within one year of injury. All participants were high-functioning and had returned to sport or recreational activities. Healthy contralateral knees served as controls. Participants were imaged in a standing posture with knees fully extended.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 105 - 112
1 Jan 2021
Lynch JT Perriman DM Scarvell JM Pickering MR Galvin CR Neeman T Smith PN

Aims

Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs.

Methods

In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims

The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design.

Methods

A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims

The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position.

Methods

A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position.


Aims

Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement.

Patients and Methods

A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (sd 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (sd 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 779 - 787
1 Jun 2017
Kutzner I Bender A Dymke J Duda G von Roth P Bergmann G

Aims

Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities.

Patients and Methods

Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1214 - 1221
1 Sep 2014
d’Entremont AG McCormack RG Horlick SGD Stone TB Manzary MM Wilson DR

Although it is clear that opening-wedge high tibial osteotomy (HTO) changes alignment in the coronal plane, which is its objective, it is not clear how this procedure affects knee kinematics throughout the range of joint movement and in other planes.

Our research question was: how does opening-wedge HTO change three-dimensional tibiofemoral and patellofemoral kinematics in loaded flexion in patients with varus deformity?Three-dimensional kinematics were assessed over 0° to 60° of loaded flexion using an MRI method before and after opening-wedge HTO in a cohort of 13 men (14 knees). Results obtained from an iterative statistical model found that at six and 12 months after operation, opening-wedge HTO caused increased anterior translation of the tibia (mean 2.6 mm, p <  0.001), decreased proximal translation of the patella (mean –2.2 mm, p <  0.001), decreased patellar spin (mean –1.4°, p < 0.05), increased patellar tilt (mean 2.2°, p < 0.05) and changed three other parameters. The mean Western Ontario and McMaster Universities Arthritis Index improved significantly (p < 0.001) from 49.6 (standard deviation (sd) 16.4) pre-operatively to a mean of 28.2 (sd 16.6) at six months and a mean of 22.5 (sd 14.4) at 12 months.

The three-dimensional kinematic changes found may be important in explaining inconsistency in clinical outcomes, and suggest that measures in addition to coronal plane alignment should be considered.

Cite this article: Bone Joint J 2014; 96-B:1214–21.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 436 - 444
1 Apr 2013
Scott CEH Nutton RW Biant LC

The lateral compartment is predominantly affected in approximately 10% of patients with osteoarthritis of the knee. The anatomy, kinematics and loading during movement differ considerably between medial and lateral compartments of the knee. This in the main explains the relative protection of the lateral compartment compared with the medial compartment in the development of osteoarthritis. The aetiology of lateral compartment osteoarthritis can be idiopathic, usually affecting the femur, or secondary to trauma commonly affecting the tibia. Surgical management of lateral compartment osteoarthritis can include osteotomy, unicompartmental knee replacement and total knee replacement. This review discusses the biomechanics, pathogenesis and development of lateral compartment osteoarthritis and its management.

Cite this article: Bone Joint J 2013;95-B:436–44.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 78 - 83
1 Nov 2014
Gustke KA

Total knee replacement (TKR) smart tibial trials have load-bearing sensors which will show quantitative compartment pressure values and femoral-tibial tracking patterns. Without smart trials, surgeons rely on feel and visual estimation of imbalance to determine if the knee is optimally balanced. Corrective soft-tissue releases are performed with minimal feedback as to what and how much should be released. The smart tibial trials demonstrate graphically where and how much imbalance is present, so that incremental releases can be performed. The smart tibial trials now also incorporate accelerometers which demonstrate the axial alignment. This now allows the surgeon the option to perform a slight recut of the tibia or femur to provide soft-tissue balance without performing soft-tissue releases. Using a smart tibial trial to assist with soft-tissue releases or bone re-cuts, improved patient outcomes have been demonstrated at one year in a multicentre study of 135 patients (135 knees).

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):78–83.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1356 - 1361
1 Oct 2012
Streit MR Walker T Bruckner T Merle C Kretzer JP Clarius M Aldinger PR Gotterbarm T

The Oxford mobile-bearing unicompartmental knee replacement (UKR) is an effective and safe treatment for osteoarthritis of the medial compartment. The results in the lateral compartment have been disappointing due to a high early rate of dislocation of the bearing. A series using a newly designed domed tibial component is reported.

The first 50 consecutive domed lateral Oxford UKRs in 50 patients with a mean follow-up of three years (2.0 to 4.3) were included. Clinical scores were obtained prospectively and Kaplan-Meier survival analysis was performed for different endpoints. Radiological variables related to the position and alignment of the components were measured.

One patient died and none was lost to follow-up. The cumulative incidence of dislocation was 6.2% (95% confidence interval (CI) 2.0 to 17.9) at three years. Survival using revision for any reason and aseptic revision was 94% (95% CI 82 to 98) and 96% (95% CI 85 to 99) at three years, respectively. Outcome scores, visual analogue scale for pain and maximum knee flexion showed a significant improvement (p < 0.001). The mean Oxford knee score was 43 (sd 5.3), the mean Objective American Knee Society score was 91 (sd 13.9) and the mean Functional American Knee Society score was 90 (sd 17.5). The mean maximum flexion was 127° (90° to 145°). Significant elevation of the lateral joint line as measured by the proximal tibial varus angle (p = 0.04) was evident in the dislocation group when compared with the non-dislocation group.

Clinical results are excellent and short-term survival has improved when compared with earlier series. The risk of dislocation remains higher using a mobile-bearing UKR in the lateral compartment when compared with the medial compartment. Patients should be informed about this complication. To avoid dislocations, care must be taken not to elevate the lateral joint line.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 68 - 74
1 Jan 2012
Christel PS Akgun U Yasar T Karahan M Demirel B

The clinical diagnosis of a partial tear of the anterior cruciate ligament (ACL) is still subject to debate. Little is known about the contribution of each ACL bundle during the Lachman test. We investigated this using six fresh-frozen cadaveric lower limbs. Screws were placed in the femora and tibiae as fixed landmarks for digitisation of the bone positions. The femur was secured horizontally in a clamp. A metal hook was screwed to the tibial tubercle and used to apply a load of 150 N directed anteroposteriorly to the tibia to simulate the Lachman test. The knees then received constant axial compression and 3D knee kinematic data were collected by digitising the screw head positions in 30° flexion under each test condition. Measurements of tibial translation and rotation were made, first with the ACL intact, then after sequential cutting of the ACL bundles, and finally after complete division of the ACL. Two-way analysis of variance analysis was performed.

During the Lachman test, in all knees and in all test conditions, lateral tibial translation exceeded that on the medial side. With an intact ACL, both anterior and lateral tibial landmarks translated significantly more than those on the medial side (p < 0.001). With sequential division of the ACL bundles, selective cutting of the posterolateral bundle (PLB) did not increase translation of any landmark compared with when the ACL remained intact. Cutting the anteromedial bundle (AMB) resulted in an increased anterior translation of all landmarks. Compared to the intact ACL, when the ACL was fully transected a significant increase in anterior translation of all landmarks occurred (p < 0.001). However, anterior tibial translation was almost identical after AMB or complete ACL division.

We found that the AMB confers its most significant contribution to tibial translation during the Lachman test, whereas the PLB has a negligible effect on anterior translation. Section of the PLB had a greater effect on increasing the internal rotation of the tibia than the AMB. However, its contribution of a mean of 2.8° amplitude remains low. The clinical relevance of our investigation suggests that, based on anterior tibial translation only, one cannot distinguish between a full ACL and an isolated AMB tear. Isolated PLB tears cannot be detected solely by the Lachman test, as this bundle probably contributes more resistance to the pivot shift.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1591 - 1595
1 Dec 2006
Price AJ Oppold PT Murray DW Zavatsky AB

The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces.

The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1245 - 1252
1 Sep 2010
Song EK Seon JK Park SJ Jeong MS

We compared the incidence and severity of complications during and after closing- and opening-wedge high tibial osteotomy used for the treatment of varus arthritis of the knee, and identified the risk factors associated with the development of complications. In total, 104 patients underwent laterally based closing-wedge and 90 medial opening-wedge high tibial osteotomy between January 1993 and December 2006. The characteristics of each group were similar. All the patients were followed up for more than 12 months. We assessed the outcome using the Hospital for Special Surgery knee score, and recorded the complications. Age, gender, obesity (body mass index > 27.5 kg/m2), the type of osteotomy (closing versus opening) and the pre-operative mechanical axis were subjected to risk-factor analysis.

The mean Hospital for Special Surgery score in the closing and opening groups improved from 73.4 (54 to 86) to 91.8 (81 to 100) and from 73.8 (56 to 88) to 93 (84 to 100), respectively. The incidence of complications overall and of major complications in both groups was not significantly different (p = 0.20 overall complication, p = 0.29 major complication). Logistic regression analysis adjusting for obesity and the pre-operative mechanical axis showed that obesity remained a significant independent risk factor (odds ratio = 3.23) of a major complication after high tibial osteotomy.

Our results suggest that the opening-wedge high tibial osteotomy can be an alternative treatment option for young patients with medial compartment osteoarthritis and varus deformity.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 344 - 350
1 Mar 2009
Luyckx T Didden K Vandenneucker H Labey L Innocenti B Bellemans J

The purpose of this study was to test the hypothesis that patella alta leads to a less favourable situation in terms of patellofemoral contact force, contact area and contact pressure than the normal patellar position, and thereby gives rise to anterior knee pain.

A dynamic knee simulator system based on the Oxford rig and allowing six degrees of freedom was adapted in order to simulate and record the dynamic loads during a knee squat from 30° to 120° flexion under physiological conditions. Five different configurations were studied, with variable predetermined patellar heights.

The patellofemoral contact force increased with increasing knee flexion until contact occurred between the quadriceps tendon and the femoral trochlea, inducing load sharing. Patella alta caused a delay of this contact until deeper flexion. As a consequence, the maximal patellofemoral contact force and contact pressure increased significantly with increasing patellar height (p < 0.01). Patella alta was associated with the highest maximal patellofemoral contact force and contact pressure. When averaged across all flexion angles, a normal patellar position was associated with the lowest contact pressures.

Our results indicate that there is a biomechanical reason for anterior knee pain in patients with patella alta.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 905 - 908
1 Jul 2006
Hetsroni I Finestone A Milgrom C Sira DB Nyska M Radeva-Petrova D Ayalon M

Excessive foot pronation has been considered to be related to anterior knee pain. We undertook a prospective study to test the hypothesis that exertional anterior knee pain is related to the static and dynamic parameters of foot pronation. Two weeks before beginning basic training lasting for 14 weeks, 473 infantry recruits were enrolled into the study and underwent two-dimensional measurement of their subtalar joint displacement angle during walking on a treadmill.

Of the 405 soldiers who finished the training 61 (15%) developed exertional anterior knee pain. No consistent association was found between the incidence of anterior knee pain and any of the parameters of foot pronation. While a statistically significant association was found between anterior knee pain and pronation velocity (left foot, p = 0.05; right foot, p = 0.007), the relationship was contradictory for the right and left foot. Our study does not support the hypothesis that anterior knee pain is related to excessive foot pronation.