Advertisement for orthosearch.org.uk
Results 1 - 20 of 83
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 99 - 99
1 Feb 2020
Carducci M DeVito P Menendez M Zimmer Z Levy J Jawa A
Full Access

Background

Stress fracture of the acromium and scapular spine is a common complication following reverse total shoulder arthroplasty (RSA), with a reported incidence of 3.1%–11%. There is some evidence associating osteoporosis with increased risk of acromial stress fractures, but little else is known about the causes of acromial stress fractures after RSA. This study aims to define better preoperative factors, including demographics, comorbidities, and diagnoses, which predispose patients to postoperative acromial stress fractures.

Methods

We retrospectively identified patients who underwent primary or revision RSA for any indication between January 2013 and December 2018 by two surgeons at two separate hospitals. Stress fractures of the acromion were identified on plain radiographs or computed tomography, when necessary. Patient demographics, comorbidities, and surgical indications were compared between patients with and without acromial stress fractures.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 18 - 18
1 Jun 2021
Cushner F Schiller P Gross J Mueller J Hunter W
Full Access

PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA. SOLUTION. The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment. MARKET. The early target market for this device includes total joint surgeons who are early adopters of technology and currently utilize technology in their practice. The kinematic data provided by the Canturio™ TE∗ System will enable clinicians to augment patient care by reviewing their objective gait metrics. In the future, this data has the potential to be integrated with other Zimmer Biomet technologies, such as the Rosa™ Knee robotic platform, mymobility™, and sensored devices like iAssist™, to provide the surgeon with a complete pre-surgical functional assessment, intraoperative data, and post-operative functional data. PRODUCT. Persona IQ will be the combination of the proven Persona personalized total knee system with the Canary Medical Canturio™ TE∗. TIMING AND FUNDING. The Canturio™ TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution. The plan is to launch the product in 2021 pending regulatory De Novo grant. This effort is a partnership between Zimmer Biomet and Canary Medical. ∗ The Canturio™ - TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 8 - 8
10 May 2024
Sim K Schluter D Sharp R
Full Access

Introduction. Acetabular component loosening with associated bone loss is a challenge in revision hip arthroplasty. Trabecular Metal (TM) by Zimmer Biomet has been shown to have greater implant survivorship for all-cause acetabular revision in small cohort retrospective studies. Our study aims to review outcomes of acetabular TM implants locally. Method. This is a retrospective observational study using data from Auckland City and North Shore Hospitals from 1st of January 2010 to 31st of December 2020. Primary outcome is implant survivorship (re-revision acetabular surgery for any cause) demonstrated using Kaplan-Meier analysis. Secondary outcome is indication for index revision and re-revision surgery. Multivariate analysis used to identify statistically significant factors for re-revision surgery. Results. 225 cases used acetabular TM implants (shells and/or augments) over 10 years. Indications include aseptic loosening (63%), instability (15%) and infection (13%). Of these, 12% (n=28) had further re-revision for infection (54%) and instability (21%). Median time to re-revision was 156 days (range 11 – 2022). No cases of re-revision were due to failure of bony ingrowth or acetabular component loosening. Ethnicity, smoking status, and age were not risk factors for re-revision procedures. Additionally, previous prosthetic joint infection, ethnicity, sex and age were not significant risk factors for re-revision due to infection. Implant survivorship was 80% at 1 year, 71% at 5 years and 64% at 10 years. Discussion. Main indications for re-revision were infection and instability. Demographic factors and co-morbidities did not correlate with increased re-revision risk. Survivorship is poorer compared to cumulative survivorship reported by the New Zealand Joint Registry (NZJR). Explanations are multifactorial and possibly contributed by underestimation of true revision rates by registry data. Conclusions. We need to identify alternate causes for poorer survivorship and review the role of TM implants in acetabular revision within our specified population


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 91 - 91
1 Feb 2020
Baral E Purcel R Wright T Westrich G
Full Access

Introduction. Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly porous, cementless implants. Early designs of cementless total knees systems were fraught with high rates of failure for aseptic loosening, particularly on the tibial component. Prior studies have assessed the bone ingrowth extent for tibial tray designs reporting near 30% extent of bone ingrowth . (1,2). While these analyses were performed on implants that demonstrated unacceptably high rates of clinical failure, a paucity of data exists on the extent on bone ingrowth in contemporary implant designs with newer methods for manufacturing the porous surfaces. We sought to evaluate the extent of attached bone on retrieved cementless tibial trays to determine if patient demographics, device factors, or radiographic results correlate to the extent of bone ingrowth in these contemporary designs. Methods. Using our IRB approved retrieval database, 17 porous tibial trays were identified and separated into groups based on manufacturer: Zimmer Natural Knee (1), Zimmer NexGen (10), Stryker Triathlon (4) and Biomet Vanguard Regenerex (2). Differences in manufacturing methods for porous material designs were recorded. Patient demographics and reason for revision are described in Table 1. Radiographs were used to measure tibiofemoral alignment and the tibial mechanical axis alignment. Components were assessed using visual light microscopy and Photoshop to map bone ingrowth extent across the porous surface. ImageJ was used to threshold and calculate values for bone, scratched metal, and available surface for bone ingrowth (Fig. 1). Percent extent was determined as the bone ingrowth compared to the surface area excluding any scratched regions from explantation. Statistics were performed among tray designs as well as between the lateral and medial pegs, if designs had pegs available for bony ingrowth. Results. Mean bone ingrowth extent was 51.4% for the tibial tray for the entire cohort. Bone ingrowth extent was statistically greater in the Zimmer NexGen design (63.8%; p=.027) compared to the other three designs (Table 2). Four sets of pegs were excluded from analysis due to lack of porous coatings or pegs having been removed at revision surgery. Across all designs, the medial peg had 45.2% ingrowth and the lateral peg had 66.1% ingrowth. The medial peg for the NexGen design had significantly less bone ingrowth compared to the lateral peg (58.7% vs. 75.4%; p=0.044). No significant differences were found in tibiofemoral alignment or tibial mechanical axis alignment between the implant groups. No significant differences were found among implants revised for aseptic loosening versus any other reason for revision (54% vs 30%; p=.18). Discussion. Our results demonstrate high rates of bone ingrowth extent in contemporary designs, further supporting porous design rationales and a role for additive manufacturing to form enhanced porosity. We plan on exploring staining techniques to confirm our visual inspection. Contemporary designs have shown successful rates for improved longevity for cementless total knee systems. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 4 - 4
1 Feb 2020
Oni J Yi P Wei J Kim T Sair H Fritz J Hager G
Full Access

Introduction. Automated identification of arthroplasty implants could aid in pre-operative planning and is a task which could be facilitated through artificial intelligence (AI) and deep learning. The purpose of this study was to develop and test the performance of a deep learning system (DLS) for automated identification and classification of knee arthroplasty (KA) on radiographs. Methods. We collected 237 AP knee radiographs with equal proportions of native knees, total KA (TKA), and unicompartmental KA (UKA), as well as 274 radiographs with equal proportions of Smith & Nephew Journey and Zimmer NexGen TKAs. Data augmentation was used to increase the number of images available for DLS development. These images were used to train, validate, and test deep convolutional neural networks (DCNN) to 1) detect the presence of TKA; 2) differentiate between TKA and UKA; and 3) differentiate between the 2 TKA models. Receiver operating characteristic (ROC) curves were generated with area under the curve (AUC) calculated to assess test performance. Results. The DCNNs trained to detect KA and to distinguish between TKA and UKA both achieved AUC of 1. In both cases, heatmap analysis demonstrated appropriate emphasis of the KA components in decision-making. The DCNN trained to distinguish between the 2 TKA models also achieved AUC of 1. Heatmap analysis of this DCNN showed emphasis of specific unique features of the TKA model designs for decision making, such as the anterior flange shape of the Zimmer NexGen TKA (Figure 1) and the tibial baseplate/stem shape of the Smith & Nephew Journey TKA (Figure 2). Conclusion. DCNNs can accurately identify presence of TKA and distinguish between specific designs. The proof-of-concept of these DCNNs may set the foundation for DCNNs to identify other prosthesis models and prosthesis-related complications. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2016
Goyal N Stulberg SD
Full Access

Introduction. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in total knee arthroplasty (TKA). PSI software executes the preoperative planning process. Several manufacturers have developed proprietary PSI software for preoperative planning. It is possible that each proprietary software has a unique preoperative planning process, which may lead to variation in preoperative plans among manufactures and thus variation in the overall PSI technology. The purpose of this study was to determine whether different PSI software generate similar preoperative plans when applied to a single implant system and given identical MR images. Methods. In this prospective comparative study, we evaluated PSI preoperative plans generated by Materialise software and Zimmer Patient Specific Instruments software for 37 consecutive knees. All plans utilized the Zimmer Persona™ CR implant system and were approved by a single experienced surgeon blinded to the other software-generated preoperative plan. For each knee, the MRI reconstructions for both software programs were evaluated to qualitatively determine differences in bony landmark identification. The software-generated preoperative plans were assessed to determine differences in preoperative alignment, component sizes, and resection depth. PSI planned bone resection was compared to actual bone resection to assess the accuracy of intraoperative execution. Results. Materialise and Zimmer PSI software displayed differences in identification of bony landmarks in the femur and tibia. Zimmer software determined preoperative alignment to be 0.5° more varus (p=0.008) compared to Materialise software. Discordance in femoral component size prediction occurred in 37.8% of cases (p<0.001) with 11 cases differing by one size and 3 cases differing by two sizes. Tibial component size prediction was 32.4% discordant (p<0.001) with 12 cases differing by 1 size. In cases in which both software planned identical femoral component sizes, Zimmer software planned significantly more bone resection compared to Materialise in the medial posterior femur (1.5 mm, p<0.001) and lateral posterior femur (1.4 mm, p<0.001). Discussion. The present study suggests that there is notable variation in the PSI preoperative planning process of generating a preoperative plan from MR images. We found clinically significant differences with regard to bony landmark identification, component size selection, and predicted bone resection in the posterior femur between preoperative plans generated by two PSI software programs using identical MR images and a single implant system. Surgeons should be prepared to intraoperatively deviate from PSI selected size by 1 size. They should be aware that the inherent magnitude of error for PSI bone resection with regard to both planning and execution is within 2–3 mm. Users of PSI should acknowledge the variation in the preoperative planning process when using PSI software from different manufacturers. Manufacturers should continue to improve three-dimensional MRI reconstruction, bony landmark identification, preoperative alignment assessment, component size selection, and algorithms for bone resection in order to improve PSI preoperative planning process


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 67 - 67
1 Feb 2020
Yoshida K Fukushima K Sakai R Uchiyama K Takahira N Ujihira M
Full Access

Introduction. Primary stability is achieved by the press fit technique, where an oversized component is inserted into an undersized reamed cavity. The major geometric design of an acetabular shell is hemispherical type. On the other one, there are the hemielliptical type acetabular shells for enhanced peripheral contact. In the case of developmental dysplasia of the hip (DDH), the aseptic loosening may be induced by instability due to decreased in the contact area between the acetabular shell and host bone. The aim of this study was to assess the effect of reaming size on the primary stability of two different outer geometry shells in DDH models. Materials and methods. The authors evaluated hemispherical (Continuum Acetabular Shell, Zimmer Biomet G.K.) and hemielliptical (Trabecular Metal Modular Acetabular Shell, Zimmer Biomet G.K.) acetabular shells. Both shells had a 50 mm outer diameter and same tantalum 3D highly porous surface. An acetabular bone model was prepared using a solid rigid polyurethane foam block with 20 pcf density (Sawbones, Pacific Research Laboratories Inc.) as a synthetic bone substrate. Press fit conditions were every 1 mm from 4 mm under reaming to 2 mm over reaming. To simulate the acetabular dysplasia the synthetic bone substrate was cut diagonally at 40°. Where, the acetabular inclination and cup-CE angle were assumed to 40° and 10°, respectively. Acetabular components were installed with 5 kN by a uniaxial universal testing machine (Autograph AGS-X, Shimadzu Corporation). Primary stability was evaluated by lever-out test. The lever-out test was performed in 4 mm undersized to 2 mm oversized reaming conditions. Lever out moment was calculated from the multiplication of the maximum load and the moment arm for primary stability of the shell. The sample size was 6 for each shell type. Results. The hemisphererical acetabular shell had the maximum lever out moment in 3 mm under reaming condition (7.4 ± 0.4 N·m). The hemielliptical acetabular shell had the maximum lever out moment in 1 mm under reaming condition (8.7 ± 0.8 N·m). Furthermore, the lever out moment of the hemielliptical acetabular shell was significantly 1.2 times greater by the t-test than the hemispherical acetabular shell under the maximum primary fixation conditions. Discussion. The risk parameter of the acetabular loosening is indicated the lack of lateral bony support. The hemielliptical shell was not adversely effected more than the hemispherical shell. Furthermore, the reaming condition of the most primary fixation on the hemielliptical shell was 1 mm under reaming, and was a more general operating procedure than the hemispherical shell (3 mm under reaming). From this study, it was suggested that the hemielliptical shell might be expected excellent clinical outcomes in severe acetabular dysplasia hips. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 107 - 107
1 Mar 2017
Yasunaga Y Yamasaki T Ochi M
Full Access

Background. The clinical results of total hip arthroplasty (THA) with a cementless prosthesis have been constantly improving due to progress in the area of stem design and surface finish. However, majority of stems are well-fixed with canal filling or diaphyseal fit, and cortical hypertrophy or metaphyseal bone atrophy has been often observed. Cementless Spotorno stem (CLS stem; Zimmer, Warsaw, USA) is a double-tapered rectangular straight stem. The purpose of this study is to investigate the mean 13 years' results of CLS stem and to evaluate the press-fit stability of CLS stem. Methods. Between 1999 and 2004, we treated 134 patients (142 hips) with CLS stem. Of those patients, 86 females (92 hips) and 13 males (14 hips), in total 99 patients (106 hips) were available at minimum of 11 years after surgery. At the time of follow-up, six females and five males were dead. The follow-up rate was 82% and the mean follow-up period was 13 years (SD; 20, range; 11–16). The mean age at the time of surgery was 65 years (SD; 10, range; 38–86). The mean body mass index was 24 (SD; 1.8, range; 19 to 28). Preoperative diagnoses were osteoarthritis in 92 patients, osteonecrosis in five patients, and rheumatoid arthritis in two patients. Majority of the patients were female because 84 patients of osteoarthritis suffered from hip dysplasia. For cementless acetabular reconstruction, APR cups (Zimmer, Warsaw, USA) were implanted in 10 hips, IOP cups (Zimmer, Warsaw, USA) in 22 hips, and Converge cups (Zimmer, Warsaw, USA) in 74 hips. As the liner of acetabular component, conventional UHMWPE (Sulene: Zimmer, Warsaw, USA) was used in APR cup and highly crosslinked UHMWPE (Durasul: Zimmer, Warsaw, USA) in IOP and Converge cups. The lipped liner was chosen in all cases, and lipped lesion was placed posteriorly. The radiographic stability of the femoral stem was determined by Engh's criteria. The ascertained period of spot welds was noted by Gruen zones on the femoral side. The presence of stress shielding, and subsidence was also evaluated. Results. A stable stem with bony on-growth was identified in all cases. The mean period of expression of spot welds was 11 months in zone 2, 10 months in zone 3, 9 months in zone 5, and 9 months in zone 6. Stress shielding of more than grade 2 was observed in only 8 hips, which was non-progressive at 1 year after surgery. Subsidence of more than 2mm was not observed in any of the hips. The cortical hypertrophy at the tip of stem was not observed. The postoperative dislocation occurred in six hips (6%) and periprosthetic femoral fracture occurred in two hips (2%). Revised surgery was performed in three hips for a recurrent dislocation and two periprosthetic femoral fracture. Conclusions. Excellent stability of CLS stem has been maintained without abnormal bone reaction at proximal femur. CLS stem is considered to achieve not only press-fit stability at trochanteric and subtrochanteric level, but bony fixation by osseointegration within 1 year after THA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 45 - 45
1 Mar 2017
Tarallo L Mugnai R Catani F
Full Access

Background. Currently, stailess steel, titanium and carbon-fiber reinforced polyetheretherketone (CF-PEEK) plates are available for the treatment of distal radius fractures. Since the possibility to create a less rigid fixation may represent an advantage in case of ostheoporotic or poor quality bone, the aim of this study is to compare the biomechanical properties of these three materials in terms of bending stiffness with a single static load and after cyclical loading, simulating physiologic wrist motion. Materials and Methods. Three volar plating systems with fixed angle were tested: Zimmer stainless steel volar lateral column (Warsaw, IN); Hand Innovations titanium DVR (Miami, FL); Lima Corporate CF-PEEK DiPHOS-RM (San Daniele Del Friuli, Udine, Italy). For each type of plate tested four right synthetic composite bone radii were used. An unstable, extraarticular fracture was simulated by making an 8 mm gap with a saw starting 12 mm proximal to the articular surface of the radius on the distal radio-ulnar joint side. The osteotomies were made perpendicular to the long axis of the bone to allow for a consistent fracture gap on the dorsal and volar sides of the radius. Plates were implanted using all the distal and proximal fixation holes [Fig. 1]. Each synthetic radius model was potted in methylmethacrylate and tested in a bi-axial servo-hydraulic test frame (MTS Minibionix 858, universal testing machine) for load to failure by advancing a cobalt chrome sphere centered over the articular surface at a constant rate of displacement of 5 mm/min. The sphere was advanced until the construct failed or the dorsal edges of the fracture met. The resultant force was defined as bending stiffness pre fatigue. Three constructs for each plate were then dynamically loaded for 6000 cycles of fatigue at a frequency of 10Hz, with a load value corresponding to the 50% of the previously calculated bending strength. Finally, the constructs were loaded to failure, measuring the bending stiffness post fatigue. Results. All fracture constructs survived all phases of the cyclic loading testing. The mean bending stiffness pre fatigue was higher for the Zimmer plate (155.23±1.91 N/mm), in comparison to Hand Innovations (138.67±4.72 N/mm), and DiPHOS-RM (124.75±3.60 N/mm) [Fig. 2]. After cyclic loading, stiffness increased significantly of a mean 24% for the Zimmer plate (190.42±4.33 N/mm); 33% for the Hand Innovations (186.57±1.71 N/mm); and 18% for the DiPHOS-RM (146.28±1.52 N/mm) [Fig. 2–3]. Conclusions. CF-PEEK plate is less stiff than stainless steel and titanium plates, with an elastic modulus more similar to bone as well as the ability to withstand prolonged fatigue strain. From these preliminary data it might be assumed that the CF-PEEK plates could provide a sufficiently stable osteosynthesis, flexible enough to unload the implant-bone interface, minimising peak stresses at the bone- implant interface, making them particularly suitable for fracture fixation in osteoporotic patients. A proper patient selection (avoiding incompliant or non collaborative) should be performed using CF-PEEK plates to avoid possible implant breakage consequent to a fall or a second trauma on the injuried wrist until the complete fracture healing. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 33 - 33
1 Mar 2017
Mueller U Kretzer J
Full Access

Introduction. In total hip arthroplasty the femoral head is connected to the stem based on a taper connection (Fig. 1). Implant manufacturers proclaim that the modular tapers are not standardized and can vary from manufacturer to manufacturer. The combination of different implant components from different manufacturers (Mix & Match) is not permitted. However, in case of revision surgery, where the stem is still well fixed, the surgeon may decide to use a femoral head of a different manufacturer (Mix & Match). This decision may be related to a limited availability of a manufacturer-identical head or the manufacturer can't be identified. In this study, different taper combinations were experimentally investigated to assess the effect of Mix & Match on taper strength. Methods. Hip stems and metal heads (n=3) of four different implant manufacturers (Biomet, DePuy, Smith&Nephew, Zimmer) were used. Firstly, torque-off tests similar to the ISO draft (ISO/DIS 7206-13) were performed without mixing the components. Subsequently, the stems were combined with metal heads from other manufacturers. All taper connections were impacted with 3 kN and then an increasing torque was applied until the head disconnected using a material testing machine (MTS Mini Bionix), (Fig. 2). The maximal torque off value was used as a measure for the taper strength. Results. Basically three different characteristics were identifed:. For the stems of the manufacturers Smith&Nephew and Zimmer there were no significant differences in taper strength using heads from other manufacturers. The Biomet stems showed a significantly reduced taper strength (up to 14%) if femoral heads of DePuy or Smith&Nephew were used, while there was no significant difference using heads of Zimmer. Interestingly it seems that DePuy stems in combination with the originally intended femoral heads lead to lower taper strengths compared to the use of heads of all other manufacturers. Discussion. This study clearly shows that a general recommendation regarding the risk of Mix & Match of stem tapers and femoral heads can't be given. The results of this study suggest that mixing of components of different manufactures may affect the taper strength positively and negatively. Obviously, some implant designs are more robust regarding taper strength in a case of a Mix & Match situation than others. However, these results were only evaluated experimentally and were limited to the taper strength. Regarding the clinical situation further aspects like taper corrosion should be considered


The purpose of this study was to evaluate the Mid-term results (minimum 5 year) of the use of 36 mm metallic femoral head coupled with 1st generation HXLPE in patients with the age of less than or equal to 50 years-old. This retrospective study included 31 cases sustained hip pain needed Total Hip Replace Arthroplasty. We used cementless stem(FMT, Zimmer, Warsaw, Indiana) at 28 cases and cement stem(Versys, Zimmer, Warsaw, Indiana) at 3 cases. We used Trilogy (Zimmer, Warsaw, Indiana) in all cases as an acetabular cup and Longevity (Zimmer, Warsaw, Indiana) in all cases as a HXLPE. Mean acetabular cup size was 52.88mm. Mean HXLPE liner thickness at 45o was 6.18mm [Fig.1]. Mean Harris hip score was 91(86–96) and all cases obtained more than 15 scores in Merle d'Aubigne and postel method at recent follow ups. All femoral stem showed stable fixation status. Mean acetabular cup Inclination was 50.6o and Anteversion was 23.1o. During follow ups, there was no complication including dislocation, osteolysis, infection and plastic fracture. Bedding-in wear rate was 0.079±0.034mm/yr. And Steady- state was 0.043±0.016mm/yr. In vitro study, 1stgeneration HXLPE showed negative mechanical property changes due to high dose radiation and remelting. So, concerns remained in using HXLPE to active patients. But we checked a good results in terms of functional scores and wear rates. And, there was no major complication during minimal 5 years check ups. So, the authors thought THRA with 36mm- metallic heads on 1st-Generation Highly Cross-linked Polyethylene as a bearing surface could be a good option in less than or equal to 50 years patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 49 - 49
1 Feb 2017
Bonnin M Saffarini M Victor J
Full Access

Purpose. Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA. Method. We analyzed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The maximum AP dimension was measured. The mediolateral dimensions were measured on the theoretical distal resection slice at three levels: the posterior region (MLP), the central region (MLC) and the anterior region (MLA) (Fig 1). The ‘aspect’ ratio (MLC/AP) ratio quantified how wide or narrow the shape is. The ‘trapezoidicity’ ratio (MLP/MLA) ratio quantified how rectangular or trapezoidal the shape is. We also quantified the medial and lateral ‘narrowing angles’ in the anterior and central zones (α and β) (Fig 2). The post-operative prosthetic overhang was calculated from CT-scan. We compared the morphological characteristics with those of twelve TKA models scanned using a three-dimensional optical scanning machine (ATOS II, GOM mbH, Braunschweig, Germany) and its photogrammetric analysis software (TRITOP, GOM mbH, Braunschweig, Germany). Results. There were significant variations in both the aspect ratio (1.16±0.07; range 0.98–1.31) and the trapezoidicity ratio (1.21±0.08; range 1.06– 1.46). Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. The multivariate analysis indicated that prosthetic overhang was correlated to the ‘aspect ratio’ (more overhang in narrow femurs, p=0.002), to the ‘trapezoidicity ratio’ (more overhang in trapezoidal femurs, p=0.002), and to the Tibio Femoral Angle (more overhang in valgus knees, p=0.035). The geometries of the twelve specimen components can be compared directly with the morphological findings of this study. Some components had excessively low trapezoidicity ratios (i.e. were too rectangular) such as DePuy LCS and Stryker Scorpio. Other designs had trapezoidicity ratios closer to anatomic values such as Zimmer Nexgen, Zimmer Persona, DePuy Attune and Smith and Nephew Journey (Fig 3). Several components had excessively low anterior lateral narrowing angle (αL) such as DePuy LCS, Stryker Scorpio. All had insufficiently low medial narrowing angles. Conclusion. This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components, which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/rectangular shape of the native femur


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 26 - 26
1 Jan 2016
Matsuda S
Full Access

Introduction. Genu recurvatum deformities are unusual before total knee arthroplasty (TKA), occurring in less than 1% of patients. The purpose of this study is to evaluate the clinical and radiographic results of primary TKA in patients that had recurvatum deformities before surgery. Patients and Methods. The inclusion criteria was to have recurvatum deformity over 10 degrees on lateral standing X-ray view. We retrospectively reviewed 22 knees with pre-operative recurvatum deformities, and the incident was 1.0% of all TKAs at our hospital. The etiology of the arthritis was osteoarthritis in 21 knees, of which 3 knees were neuropathic disease, and rheumatoid arthritis in 1 knee. There were 6 men and 16 women, and the average age was 73.3 years (range, 53 to 83 years) at the time of operation. The average follow-up period was 15 months (range, 3 to 81 months). We performed to use medial parapatellar approach and bone cutting was done by measured resection technique. The surgical knacks were resection of less distal femur and proximal tibia bone to make extension gap tightly, additionally decrease the tibial posterior slope. Posterior-stabilizer (PS) implants (NexGen LPS: Zimmer, Bisurface KU4+: JMM) were used in 20 knees and constrained implants (NexGen RH knee: Zimmer, Endo-Model Hinge Knee: Link) were in 2 knees with neuropathic joints. Results. The averaged Knee Society Knee and Function score improved from 33.1 points to 94.1 points, and 28.0 points to 60.5 points at the time of the last follow-up. The femorotibial angle changed from averaged 183.4 degrees (range, 162 to 195 degrees) preoperatively to averaged 173.3 degrees (range, 170 to 177 degrees). Preoperative hyperextension was averaged 18.2 degrees (range, 10 to 40 degrees). Intraoperatively, the hyperextension deformity was corrected in all cases. The tibial posterior slope was averaged 1.7 degrees (range, −2.7 to 6 degrees). The final hyperextension improved averaged 6.9 degrees (range, −1.7 to 26.6 degrees), all but one knee were corrected. One case treated with a standard PS type, who was associated with neuropathic disease, had a recurrence of recurvatum deformity and required revision surgery. Discussion. Recurvatum may be associated with a severe osseous deformity, capsular or ligamentous laxity, and neuromuscular disease. Surgical solutions may be to use a standard PS prosthesis with a slight underresection of the bone edge, and decrease tibial posterior slope. An alternative solution is to use a rotating-hinge prosthesis with less than antigravity quadriceps strength for neuromuscular disease


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 48 - 48
1 Jan 2016
Takayama K Matsumoto T Muratsu H Nakano N Shibanuma N Tei K Matsushita T Kuroda R Kurosaka M
Full Access

Purpose. The tibia first technique in unicompartmental knee arthroplasty (UKA) may have the advantage that surgeons can obtain a balanced flexion-extension gap. However, changes of the soft tissue tension during UKA has not been elucidated yet. The purpose of this study was to examine the correlation between the soft tissue tension before the femoral osteotomy and after the femoral component in place using the tensor in UKA. Methods. Thirty UKAs for isolated medial compartmental osteoarthritis or idiopathic osteonecrosis were assessed. The mean age was 71.8±8.5 years old (range: 58–85), and the average coronal plane femorotibial angle (FTA) was 181.2±3.2 degree preoperatively. All the patients received a conventional medial Zimmer Unicompartmental High Flex Knee System (Zimmer Inc, Warsaw, Ind). The actual values of the proximal and posterior femoral osteotomy were calculated by adding the thickness of the bone saw blades to the thickness of the bony cut. Using a UKA tensor which designed to facilitate intra-operative soft tissue tension throughout the range of motion (ROM), the original gap before the femoral osteotomy, the component gap after the femoral osteotomy, and component placement were assessed under 20 lb distraction forces. (Figure 1). Results. The mean actual thickness of the distal femoral osteotomy 6.5 ± 1.3 mm and the posterior femoral osteotomy was 7.4 ± 1.3 mm. The distal thickness of the Zimmer UKA was set to 6.5 mm and the mean posterior thickness of the prosthesis used in this study was 5.8 ± 0.3 mm. There is a positive correlation between the original and component gap throughout the ROM (R > 0.5). The original and component gap showed the same kinematic pattern from full extension to 90 degrees of knee flexion. However, the component gap showed significantly higher compared to the original gap after 120 degrees of knee flexion (p < 0.001). (Figure 2). Conclusions. Despite the fact that the component gap showed significantly higher compared to the original gap in deep flexion, there is a positive correlation between the original and component gap throughout the ROM. The discrepancy during deep flexion was due to the posterior design of the prosthesis that is designed to be thinner than the actual thickness of the posterior osteotomy in order to prevent flexion gap tightness. These results suggest that the tibia first technique with the tensor have the advantage that surgeons can predict final soft tissue tension before femoral osteotomies with the comprehension of the prosthetic design and help restore natural knee kinematics, potentially improving implant survival and functional outcomes


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 149 - 149
1 May 2016
De Martino I Sculco P Galasso O Gasparini G
Full Access

Introduction. The optimal management of severe tibial and/or femoral bone loss in a revision total knee arthroplasty (TKA) has not been established. Reconstructive methods include structural or bulk allografts, impaction bone-grafting with or without mesh augmentation, custum prosthetic components, modular metal augmentations of prosthesis and tumor prosthesis. Recently metaphyseal fixation using porous tantalum cones (Zimmer, Warsaw, IN) has been proposed as alternative strategy for severe bone loss. Objectives. The purposes of this study were to determine the clinical and radiographic outcomes in patients who underwent revision knee arthroplasty with tantalum cones with a minimum of 5-year follow-up. Methods. From November 2005 to August 2008 a total of 26 porous tantalum metaphyseal cones were used to reconstruct severe tibial and/or femoral bone loss in 18 patients during revision TKA at a single institution. There were 12 females and 6 males with an average age of 73 years (range 55–84) at the time of revision. The mean clinical and radiographic follow-up was 6.3 years (range, 5–8). The reasons for revision were aseptic loosening (5 cases) and deep infection (13 cases). A Two stage procedure was used in all septic cases. According to the Anderson Orthopaedic Reseach Institute (AORI) bone defects classification all femoral and tibial defects were rated 2B and 3 (3 T2b, 9 T3, 3 F2b and 10 F3). A femoral cone was inserted in 6 patients, a tibial cone was inserted in 5, a double cone in 6 (femoral and tibial), and a triple cone in 1 (1 femoral and 2 tibial). A constrained condylar implant (LCCK, Zimmer, Warsaw) was inserted in 6 patients and a rotating hinge knee implants (RHK, Zimmer, Warsaw, IN) in 12 pateints. All patients were prospectively followed for clinical and radiographic evaluation preoperatively and postoperatively at 1, 3, 6 months, one year and yearly thereafter. Results. Knee Society knee scores improved from a mean of 31.3 points before surgery to 76.7 points at latest followup (p < 0.001). Knee Society function scores improved from a mean of 21.7 points before surgery to 65.4 points at latest followup (p < 0.001). The average flexion contracture was 6° and the average flection was 88°. At the time of the latest follow-up the average flexion contraction was 3° and the average flexion was 105°. No radiolucent lines were seen between the cones and the adjacent tibial and femoral bone at the latest follow-up. There was no evidence of loosening or migration of any implant at the time of the final follow-up. There have been two reoperations for recurrent infection (11%). Conclusions. Our experience demonstrates excellent clinical and radiographic mid-term outcomes and confirms that metaphyseal fixation with porous tantalum cones can be achieved. Long-term follow up and comparative studies are necessary


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 47 - 47
1 Jul 2020
Johnstone B Ryaby J Zhang N Waldorff E Lin C Punsalan P Yoo J Semler E
Full Access

The range of allograft products for spinal fusion has been extended with the development of cellular bone matrices (CBMs). Most of these combine demineralized bone with viable cancellous bone prepared in a manner that retains cells with differentiation potential. The purpose of this study was to compare commercially-available human CBMs in the athymic rat model of posterolateral spinal fusion. The products compared were Trinity ELITE® (TEL, OrthoFix), ViviGen (VIV, DePuy Synthes), Cellentra (CEL, Zimmer Biomet), Osteocel® Pro (OCP, NuVasive), Bio4 (BIO, Stryker) and map3 (MAP, RTI Surgical). Bone from the ilia of syngeneic rats was used as a control to approximate the human gold standard. All implants were stored, thawed, and prepared per manufacturer's instructions and all implantations occurred within the manufacturer's time allowance for use after preparation. In total, fifteen 9–10 week old male rats were implanted per implant type, with three different lots of each implant used per five rats to account for lot-to-lot variability. Under anesthesia, a posterior midline longitudinal skin and subcutaneous incision was made, followed by bilateral longitudinal paraspinal myofascial incisions to expose the transverse processes at the L4–5 level. Implants (0.3 cc of allograft or freshly harvested syngeneic iliac bone graft) were placed bilaterally. Surgeons were blinded as to CBM implant type. Incisions were closed with sutures and in vivo microCT scans performed within 48 hours of surgery. A second microCT scan was taken at euthanasia, six weeks after surgery, and the lumbar spines harvested. Fusion was evaluated by manual palpation by three independent, blinded reviewers. MicroCT analysis was performed by an independent CRO (ImageIQ, Cleveland OH). Anonymity of implant type was rigorously kept to avoid bias. By manual palpation, 5/15 (33%) spines of the syngeneic bone group were fused at 6 weeks. The TEL (8/15, 53%) and CEL (11/15, 73%) groups were not significantly different from each other but were from all other CBM groups. Only 2/15 (13%) of VIV-implanted spines fused and none (0/15, 0%) of the OCP, BIO and MAP CBMs produced stable fusion. The mineralized cancellous bone component of the allografts confounded radiographic analysis but microCT analysis indicated bone volume increased over six weeks for all groups except the syngeneic bone (−4.3%). TEL (+65%) and CEL (+73%) were not different from each other but were significantly increased over all other groups (VIV 29%, OCP 37%, BIO 19%, and MAP 45%, respectively). CBMs have distinct formulations and are likely processed differently. The claimed live cell and stem cell contents differ between products. Additionally, map3 has cells added at the time of surgery, whereas the other CBMs are processed to retain matrix-adherent cells. Given the wide range of formulations, differences in performance were not surprising, and Trinity ELITE and Cellentra did significantly better than other implants at both forming new bone and achieving fusion. The other CBMs did not have greater bone formation than the control and were very poor at forming a solid fusion. These findings suggest more careful consideration of these allograft products is needed at the clinical level


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 204 - 204
1 May 2012
Maini L Yuvarajan P Gautam V
Full Access

Anatomically contoured periarticular plates for treatment of proximal tibia fractures is fast becoming the standard for care. The aim of our study was to assess the accuracy of the anatomic contour of proximal lateral tibial plates of AO Stryker and Zimmer in Indian patients. We assessed the accuracy of the anatomic contour of proximal lateral tibial plates of AO Stryker and Zimmer in 50 Indian dry tibiae. All the plates were placed on the 50 tibia by two independent surgeons according to what they felt was the best fit. The tibiae and the plate fits were mapped, quantified, and analysed using digital image capturing and adobe photoshop software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes and only ten plates of different companies qualified this. Recognising and understanding the substantial variations in fit that exist between anatomically contoured plates, it might be worthwhile developing proximal tibia plates specific for the Indian population or validating this study by having a larger multicentric study group. This paper would suggest caution when these plates are used as a tool for indirect reduction of the fractures


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 41 - 41
1 Mar 2013
Zaghloul A Griffiths E Lawrence C Nicolai P
Full Access

To evaluate prospectively the mid-term results of the Zimmer Unicondylar Knee arthoplasty (UKA). Between 2005 and 2012, 187 unicompartmental knee arthroplasties (UKA) were performed by a single surgeon using a fixed-bearing prosthesis (Zimmer). 37 cases were excluded as either were lost to follow-up or had less than six months follow-up. The study included 150 UKAs. Deformity, if present, was correctable. Patellofemoral joint (PFJ) disease was not considered as an absolute contraindication. The average patient age at the time of surgery was 66 years (range 42–88 years); 78 of which were male. Mean follow-up time was 3.6 years (range 7–81 months). Mean Body Mass Index (BMI) was 29 (range 21–41). Clinical and conventional radiological evaluations were carried out at six months, one, two and five years postoperatively. 147 cases were medial compartment replacement and three were lateral. 86 patients had grade III OA and 64 had grade IV (Kellgren and Lawrence). 113 patients had an element of PFJ disease. The mean Knee Society knee and function scores had an improvement from 55 and 54 points pre-operatively to 95 and 94 points respectively at time of most recent evaluation. The average flexion improved from 116 degrees pre-operatively to 127 degrees. Two cases were revised, one due to progression of osteoarthritis in the lateral compartment of the knee and the other was due to arthrofibrosis. The Zimmer unicompartmental knee arthroplasty provided excellent pain relief and restoration of function in carefully selected patients. However, long-term studies are necessary to investigate the survival rate for this prothesis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 113 - 113
1 Feb 2020
Wimmer M Ngai V Kunze J Cip J Laurent M Jacobs J
Full Access

Introduction. Ideally, standardized wear testing protocols replicate the in vivo motions and forces of TKR patients. In a previous study with 30 TKR patients, two distinct in vivo gait patterns emerged, one characterized as having low anteroposterior (AP-L) motion and the other high anteroposterior (AP-H) motion. The aim of this study was to determine the effect of the two in vivo-determined gait patterns on total and backside insert wear in comparison with the ISO standard 14243-3. In order to differentiate and accurately quantify topside and backside wear, a novel technique was employed where different lanthanide tracers are incorporated into the polyethylene during manufacture. Materials and Methods. Components from the Zimmer NexGen CR Knee Replacement System were used. Europium (Eu) and Gadolinium (Gd)-stearates were mechanically mixed with GUR1050 UHMWPE resin to obtain two tracer-UHMWPE resins containing 49.1±1.5 ppm Eu and 68.8±1.6 ppm Gd, respectively. 12 grams of the Eu-doped resin was placed on the bottom, 10 grams of virgin GUR1050 resin was placed in the middle, and 10 grams of Gd-doped resin was placed on the top to mold NexGen CR tibial inserts. The backside was then machined to interlock with the tibial baseplate. The minimum insert thickness was 10 mm. All inserts were packaged in nitrogen and gamma sterilized. The wear test was conducted on a 4-station knee simulator in displacement-control mode. Simulator input was obtained from ISO 14243-3 and from gait of 30 NexGen TKR subjects, previously categorized into low (AP-L) and high (AP-H) anteroposterior motion groups. Per station, each insert was sequentially subjected to ISO, AP-L, AP-H motion for 2 Mc at 1 Hz. Subsequently, the ISO profile was repeated. Tibial inserts were weighed and lubricant samples were taken after every 0.5 Mc interval. Knowing the Eu and Gd concentrations from ICP-MS analysis, and normalizing those to the concentrations in the polyethylene inserts, the localized (Eu – backside; Gd – topside) wear was calculated. Wear particle analysis was conducted following established protocols. Results. For all tested liners (n=4 + soak) during the three tested motion profiles, the chemically calculated wear correlated closely with the gravimetrically determined wear (R. 2. »0.8), with slopes not different from 1. Both in vivo motion groups displayed higher wear rates than the ISO group following the order of the AP motion amplitudes (Figure). Backside wear for ISO constituted 2.76% ± 0.90% (mean ± SE) of the total wear, increasing significantly to 15.8 ± 3.2% for AP-L and further increasing to 19.3 ± 0.95% for AP-H (p<.001). The mean wear particle sizes were under 200 nm for all three motion patterns, being largest for the AP-H gait protocol (Table). Discussion. Both in vivo motion groups displayed higher wear rates than the group tested per ISO standard 14243-3. Interestingly backside wear was affected the most and increased 4.5 to 6-fold over ISO. Testing for the proportion of backside wear across various activities of daily living may therefore be an important consideration in evaluating knee prostheses wear and could be facilitated by this new tracer technology. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 41 - 41
1 Feb 2020
Melnic C Aurigemma P Dwyer M Domingo-Johnson E Bedair H
Full Access

Background. Multiple retrospective studies have compared UC with traditional bearings and shown comparable results and outcomes when looking at clinical and radiologic variables, complications rates, and implant survivorship; however, debate still exists regarding the optimum bearing surface. The present study seeks to determine whether there are any preoperative patient demographic or medical factors or anatomic variables including femoral condylar offset and tibial slope that may predict use of a UC bearing when compared to a standard CR group. Methods. The study cohort consisted of 117 patients (41 males, 76 females) who underwent primary TKA with the senior author. The implants utilized were either the CR or UC polyethylene components of the Zimmer Persona Total Knee System. Insert selection was based on intraoperative assessment of PCL integrity and soft tissue balancing. Patient demographics (age, gender, BMI) and co-morbidities (hypertension, diabetes, depression, cardiac disease, and lung disease) were recorded. Intraoperative variables of interest included extension and flexion range of motion, estimated blood loss (EBL), tourniquet time, and polyethylene and femoral component sizes. We calculated change in tibial slope and femoral condylar offset from pre- to post-surgery and computed the percentage of patients for whom an increase in tibial slope or femoral condylar offset was determined. Postoperative variables, including length of stay, complication rates and reoperation rates, were recorded. All dependent variables were compared between patients who received the UC component and patients who received the CR component. Continuous variables were assessed using independent samples t-tests, while categorical variables were compared using the chi-square test of independence. Results. There were 39 patients who received a UC insert and 78 patients who received CR insert. Patient age (p = 0.58), BMI (p = 0.34), or sex distribution (p = 0.84) did not differ between the UC and CR groups. Mean LOS (3.59 vs. 3.08; p = 0.017), EBL (54.5 vs. 46.7; p=0.021), and tourniquet time (61.2 vs. 57.4; p=0.032) were greater for the UC group. Intraoperative implant variables, including polyethylene component (p = 0.49), femoral component (p = 0.56), use of a narrow femoral component (p = 0.85), and patellar component size (p = 0,83), were similar between groups. Additionally, preoperative (p = 0.46) and postoperative (p = 0.19) condylar offset and preoperative (p = 0.66) and postoperative (p = 0.23) tibial slope were not different between the groups. However, the proportion of patients for whom tibial slope increased postoperatively was greater for the UC group compared to the CR group (43.6 vs. 21.8% respectively, p=0.018). Conclusions. Our results showed that no preoperative medical co-morbidities or demographic factors predicted use of the UC bearing; however, postoperative tibial slope was increased for a greater number of patients who received the UC implant. Patients who have an increase in their slope from their native anatomy during tibial preparation may require additional balancing of the flexion gap, and use of a UC component may be beneficial in this particular group of patients