Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MORPHOMETRIC ANALYSIS OF THE DISTAL FEMUR: TKA FEMORAL COMPONENTS SHOULD BE MORE TRAPEZOIDAL

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

Purpose

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA.

Method

We analyzed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The maximum AP dimension was measured. The mediolateral dimensions were measured on the theoretical distal resection slice at three levels: the posterior region (MLP), the central region (MLC) and the anterior region (MLA) (Fig 1). The ‘aspect’ ratio (MLC/AP) ratio quantified how wide or narrow the shape is. The ‘trapezoidicity’ ratio (MLP/MLA) ratio quantified how rectangular or trapezoidal the shape is. We also quantified the medial and lateral ‘narrowing angles’ in the anterior and central zones (α and β) (Fig 2).

The post-operative prosthetic overhang was calculated from CT-scan.

We compared the morphological characteristics with those of twelve TKA models scanned using a three-dimensional optical scanning machine (ATOS II, GOM mbH, Braunschweig, Germany) and its photogrammetric analysis software (TRITOP, GOM mbH, Braunschweig, Germany).

Results

There were significant variations in both the aspect ratio (1.16±0.07; range 0.98–1.31) and the trapezoidicity ratio (1.21±0.08; range 1.06– 1.46). Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. The multivariate analysis indicated that prosthetic overhang was correlated to the ‘aspect ratio’ (more overhang in narrow femurs, p=0.002), to the ‘trapezoidicity ratio’ (more overhang in trapezoidal femurs, p=0.002), and to the Tibio Femoral Angle (more overhang in valgus knees, p=0.035).

The geometries of the twelve specimen components can be compared directly with the morphological findings of this study. Some components had excessively low trapezoidicity ratios (i.e. were too rectangular) such as DePuy LCS and Stryker Scorpio. Other designs had trapezoidicity ratios closer to anatomic values such as Zimmer Nexgen, Zimmer Persona, DePuy Attune and Smith and Nephew Journey (Fig 3). Several components had excessively low anterior lateral narrowing angle (αL) such as DePuy LCS, Stryker Scorpio. All had insufficiently low medial narrowing angles.

Conclusion

This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components, which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/rectangular shape of the native femur.


*Email: