Advertisement for orthosearch.org.uk
Results 1 - 20 of 546
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 3 - 3
1 Nov 2021
Iavicoli S
Full Access

The future of work brings several challenges and opportunities for occupational health and safety on three major drivers: the rapid progress of technological innovation; demographic changes, in particular ageing of the workforce and migration; and changes in the labour market, especially owing to new ways of per-forming jobs. Innovation technologies are leading to an overall transformation of industrial processes that offer huge developmental perspectives in the world of work and opportunities for society. In the field of prevention of musculoskeletal disorders, relevant progresses have been made in the clinical setting and in the context of care, also in relation to the ageing society. In the near future, the adaptation of workstations and the implementation of sensors and enabling technologies (collaborative robots and exoskeletons) will offer, together with the innovations in the clinic and orthopaedic surgery, a significant contribution to the reduction of risks from biomechanical overload, as well as support interventions to increase work ability and reduce the impact of disability. However, the potential risk scenarios for health and safety in the workplace, along with the progress in occupational health research, lead to the need for creating an inte-grated system of skills and approaches to adopt a Prevention through Design perspective. This requires designing and conceiving processes taking into consideration occupational risk prevention and guarantee-ing the return to work in a multidisciplinary and integrated perspective


Background. Individual illness perceptions have been shown to be important influences on clinical outcomes for low back, yet significant others' illness perceptions are rarely explored, particularly in relation to work disability. Method. Semi-structured interviews based on the Illness Perceptions Questionnaire were conducted with a purposive sample of UK disability benefit claimants, along with their significant others (n=5 dyads). Data were analysed using template analysis. Results. Significant others further reinforced and validated claimants' negative beliefs/illness perceptions, including fear of pain/re-injury associated with certain types of work, perceived job inflexibility and/or lack of support from employers. Keen in their desire to be viewed as a ‘good’ spouse/partner/close family member, significant others acted as a ‘witness to pain’, supporting claimants' self-limiting behaviour and statements of incapacity, often responding with assistance and empathy. In some cases, significant others were more pessimistic about the likelihood of claimants returning to work, and more resigned to the permanence of the claimant's condition. Interestingly, all significant others also experienced chronic illness, some being disability benefit claimants themselves, thus participants' lives were often intertwined and defined by illness. Conclusions. This exploratory study reveals novel and interesting insights about the illness beliefs and behaviours of significant others in relation to disabling back pain, and also the wider social circumstances that may act as obstacles to return to work. Conflicts of Interest. None. Source of Funding. BackCare and NHS Blackburn with Darwen


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 85 - 85
1 May 2017
Folkard S Bloomfield T Page P Wilson D Ricketts D Rogers B
Full Access

Introduction. We used patient reported outcome measures (PROMS) to evaluate qualitative and societal outcomes of trauma. Methods. We collected PROMs data between Sept 2013 and March 2015 for 92 patients with injury severity score (ISS) greater than 9. We enquired regarding return to work, income and socioeconomic status, dignity and satisfaction and the EQ-5D questionnaire. Results. Return to work. Of patients working at admission 15/58(26%) anticipated returning to work within 14 days of discharge. Work plans at discharge did not correlate with ISS scores overall (r=−0.05, ns), or when stratified by working group. Increased physicality of work showed a trend towards poorer return to work outcomes (not significant in Spearman's rank analysis: r= 0.14, p= 0.32). Income and socioeconomic status: No significant difference was demonstrated between the comparative incomes of patients with the best and worst return to work outcomes (ANOVA n=61, t=0.63, ns). Lowest quartile earners (n=19) were more likely to complete the open questions (79%) than higher income patients (62%). Dignity and satisfaction: Prominent positive themes were: care, staff, professionalism, and communication. Prominent negative themes were: food, ward response time, and communication. %). Patients ‘mostly’ or ‘always’ satisfied with their care did not have significantly different incomes (ANOVA, t=0.13, ns). EQ-5D: Self-rated health status correlated with perceived likelihood of return to work (r=0.25, p=0.0395). Correlation was demonstrated between EQ-5D scores and perceived dignity preservation (r=0.38, p=0.0004), and overall satisfaction (r=0.46, p< 0.0001). There was no correlation between EQ-5D and ISS score. Conclusion. EQ5D correlated with work plans, dignity, and satisfaction. Planned return to work did not correlate with ISS score or socioeconomic status. Unlike previous studies we demonstrated that lower socioeconomic groups have best engagement with PROMS. This study highlighted the value of qualitative PROMS analysis in leading patient-driven improvements in trauma care


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 23 - 23
1 Apr 2013
McCluskey S Brooks J King N Burton K
Full Access

Background. Individual illness perceptions have been shown to be important influences on both clinical and work outcomes for those with back pain, yet the influence of ‘significant others’ (spouse/partner/close family member) illness perceptions is rarely explored, particularly in relation to work participation. Method. Semi-structured interviews based on the Illness Perceptions Questionnaire were conducted with two purposive samples of chronic back pain patients (working and work disabled), along with their significant others (n=28). Data were analysed using template analysis. Results. The significant others of patients who were work disabled tended to reinforce the patients' limitations and negative consequences of the back pain condition on every aspect of their lives. They believed that patients needed to be pain-free in order to resume work, and equated treatment success with complete removal of pain. Overall, they perceived patients to be blameless victims. In contrast, the significant others of patients who had managed to remain at work despite persistent back pain focused instead on what the patient could still do, were more accepting of treatment as providing pain management rather than a cure, and tended to describe patients as being stoical and heroic. Conclusions. This exploratory in-depth research reveals novel and interesting insights about the illness beliefs of significant others in relation to persistent back pain, and highlights the wider social circumstances that may act as barriers/facilitators to work participation. No conflicts of interest. Sources of funding: BackCare and the BUPA foundation. This abstract has not been previously published in whole or substantial part nor has been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 31 - 31
1 Jan 2013
Pincus T Greenwood L
Full Access

Purpose and background. Private musculoskeletal practitioners treat a large section of people with back pain, and could play an important role in returning and maintaining patients to work. We aimed to examine practitioners perception of their role quantitatively. methods and results. A postal questionnaire was sent to 300 chiropractors, osteopaths and physiotherapists (n=900). Responses were received from 352 out of 900 (39%). Physiotherapists visited the work place more frequently than either of the other groups, osteopaths were more likely to give out sick leave certificates than chiropractors, who in turn are more likely to give out sick leave certificates than physiotherapists. Physiotherapists had a significantly higher belief in the psychological benefits of work, and in the importance of contacting work than either chiropractors or osteopaths. In addition, physiotherapists held the strongest belief that returning their patients to work was within their remit. There were no differences between the groups in their beliefs that employers could be an obstacle to return to work, that work could be detrimental to recovery, or in their belief that rest from work was necessary for recovery. Almost all practitioners recommended a short break from work sometimes, and more than 10% recommended a break often or always. Conclusion. Overall, practitioners perceived their role in returning patients to work as limited, and believed that direct contact with employers was beyond their remit. Physiotherapists appear to be better placed to liaise with work in terms of both their beliefs and activities. Conflicts of interest. None. Sources of funding. None


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 136 - 136
4 Apr 2023
Renteria C Wasserstein D Tomescu S Razmjou H
Full Access

The primary purpose of this longitudinal study was to examine the impact of physical and mental well-being on a successful return to work after cartilage or ligament knee injury. A secondary purpose was to examine the effectiveness of our program regarding ordering imaging (plain X-rays, US, MRI, CT scan), and the impact that costly investigations made in clinical management. Workers who had sustained a work-related knee injury and were assessed at the lower extremity specialty clinic of our hospital program were followed up until they were discharged. All patients completed the numeric pain rating scale (NPRS), the Lower Extremity Functional Scale (LEFS), and the Hospital Anxiety and Depression Scale (HADS) on the initial assessment and at final follow-up. We included 30 patients, mean age, 50(9), 11(37%) females, 19(63%) males. The most common mechanisms of injury were twisting (13, 45%) and falls (12, 41%). The knee injuries included 10 anterior collateral ligament (ACL), 3 posterior collateral ligament (PCL), 19 medical and lateral ligament injuries, and 22 meniscus injuries with some injuries overlapping. Ten patients (30%) underwent surgery (8 meniscectomy, two ligamentous repairs). Patients showed improvement in pain scores (p<0.0001) and the LEFS scores (p=0.004). Seventeen patients (57%) returned to full-time work and 11 (37%) were not working at the time of discharge with one patient performing part-time work, and one on re-training. Higher levels of pre (p=0.02) and post-treatment (p=0.03) depression and post-treatment anxiety (p=0.02) had a negative impact on a successful return to work. Most clients had proper investigations ordered by their family physicians in the community (24 plain x-rays, 11 US, and 21 MRI). Our team ordered only 6 plain x-rays and 6 new MRI. We found significant improvement in pain and disability in injured workers who received an expedited multidisciplinary care. Anxiety and depression were the most important predictors of poorer recovery and a less successful work status. The judicious use of costly imaging is expected to reduce the overall health care cost of an injury, while providing new important information such as adding a new diagnosis or changing the management


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 117 - 117
2 Jan 2024
Hankenson K
Full Access

Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or chondrocyte differentiation. While dysregulation can result in abnormal healing, activating these pathways in the correct spatiotemporal context can enhance healing. Bone morphogenetic protein (BMP) signaling is well-recognized as being required for bone regeneration, and BMP is used clinically to enhance bone healing. However, it is imperative to develop new therapeutics that can be used alone or in conjunction with BMP to drive even more robust healing. Notch signaling is another highly conserved signaling pathway involved in tissue development and regeneration. Our work has explored Notch signaling during osteoblastogenesis and bone healing using both in vitro studies with human primary mesenchymal progenitor cells and in vivo studies with genetically modified mouse models. Notch signaling is required and sufficient for osteoblast differentiation, and is required for proper bone regeneration. Indeed, intact Notch signaling through the Jagged-1 ligand is required for BMP induced bone formation. On-going work continues to explore the intersection between BMP and Notch signaling, and determining cell types that express Notch receptors and Notch ligands during bone healing. Our long-term objective is to develop Notch signaling as a clinical therapy to repair bone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 77 - 77
2 Jan 2024
Khiabani A Kovrlija I Locs J Loca D Gasik M
Full Access

Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions GA860462 (PREMUROSA). The authors also acknowledge the access to the infrastructure and expertise of the BBCE – Baltic Biomaterials Centre of Excellence (European Union Horizon 2020 programme under GA857287)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 26 - 26
17 Apr 2023
Bhattacharya S
Full Access

Radioprotective gowns are an essential part of operating in orthopaedicse. As we are aware from the evidence, surgeons, and in particular orthopaedic surgeons, are at risk of developing chronic neck and back pain. This is likely a result of the combination of of long operations, heavy equipment, radioprotective gowns and poor ergonomic set up. Women are a minority in orthopaedics. Amongst trainees there has been an improvement with 20–25% of current trainees are women, however at consultant level this percentage is a lot lower at 5–7%. Radioprotective gowns worn by trainees are frequently not well fitted and few surgeons have access to bespoke fitted gowns. A questionnaire given to 32 trainees in the region found a significant burden of back pain in trainees and 57% of surgeons felt their gowns were not appropriately fitted. In this study every woman questioned reported back pain as a result of operating and 87% felt the gowns used exacerbated back pain, this figure was 56% in men. 80% of surgeons felt that surgeons would benefit from bespoke fitted gowns, even those that did not themselves have severe back pain. 45% of trainees felt their pain was moderate to severe. In surgery we have the responsibility to protect ourselves and our colleagues from work based injury and illness. Back pain should not be ignored as a symptom and radioprotective gowns is a good place to start. Overall the majority the gowns exacerbated their back pain during or after procedures, worse in women as described above. We can use this data and do what we can to provide trainees with a range of sizes whilst working in hospitals during their training. Anectodally women sizes were less available in the departments and we can work to improve this and reduce the burden of pain amongst surgeons


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 76 - 76
17 Apr 2023
Hulme C Roberts S Gallagher P Jermin P Wright K
Full Access

Stratification is required to ensure that only those patients likely to benefit, receive Autologous Chondrocyte Implantation (ACI); ideally by assessing a biomarker in the blood. This study aimed to assess differences in the plasma proteome of individuals who respond well or poorly to ACI. Isobaric tag for relative and absolute quantitation (ITRAQ) mass spectrometry and label-free proteomics analyses were performed in tandem as described previously by our group (Hulme et al., 2017; 2018; 2021) using plasma collected from ACI responders (n=10) compared with non-responders (n=10) at each stage of surgery (Stage I, cartilage harvest and Stage II, cell implantation). iTRAQ using pooled plasma detected 16 proteins that were differentially abundant at baseline in ACI responders compared with non-responders (n=10) (≥±2.0 fold; p<0.05). Responders demonstrated a mean Lysholm (patient reported functional score from 0–100) improvement of 33±13 and non-responders a mean worsening of −13±13 points. The most pronounced plasma proteome shift was seen in response to Stage I surgery in ACI non-responders, with 48 proteins being differentially abundant between the two surgical procedures. We have previously noted this marked shift in response to initial surgery in the SF of ACI non-responders, several of these proteins were associated with the Acute Phase Response. One of these proteins, clusterin, could be confirmed in patients’ plasma using an independent immunoassay using individual samples. Label-free proteomic data from individual samples identified only cartilage acidic protein-1 (known to associate with osteoarthritis progression) to be significantly more abundant at Stage I in the plasma of non-responders. This study indicates that proteins can be identified within the plasma that have potential use in ACI patient stratification. Further work is required to validate the findings of this discovery-phase work in larger ACI cohorts


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 47 - 47
4 Apr 2023
Knopp B Kushner J Esmaeili E
Full Access

In the field of hand surgery, physicians are working to improve patient satisfaction by offering several minor procedures in the physician's office via the WALANT method. We seek to investigate the degree of patient satisfaction, out of pocket cost, convenience and comfort experienced with in-office hand procedures. A ten question survey consisting of a ten-point Likert scale of agreement and questions asking for a numerical answer was administered via phone call to 33 patients treated with minor hand operations in the office setting in the United States. There were 18 male and 15 female respondents with an average age of 65.59±12.64 years. Respondents underwent procedures including trigger finger release (18), needle aponeurotomy (7), and other minor hand operations. Survey responses indicated strong agreement with questions 1-3 and 6–8, with responses averaging 9.60±0.23 in these positive metrics. Questions 4 and 5, which asked whether the surgery and recovery period were painful, respectively, averaged 2.65±0.49, indicating a mild level of disagreement that either was “painful”. Additionally, most patients responded that they did not take time off work (12) or are not currently employed (11). Other respondents (3) reported taking between one to five days off work post-operatively. 27 respondents also reported an out of pocket cost averaging $382±$976, depending on insurance coverage. Patients reported a small degree of pain in the operative and post-operative period, a high degree of comfort and convenience and a high degree of satisfaction. Likewise, the patient-reported out of pocket cost was far lower than comparable surgical costs in alternate settings. These results support the use of in-office procedures for minor hand surgeries from a patient perspective and indicate a nearly universal intent to repeat any future hand operations in the office setting


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 111 - 111
14 Nov 2024
Torre ID Redondo LM Sierra CG Cabello JCR Bsarcia AJA
Full Access

Introduction. The objective of the work is construction of a multi-bioactive scaffold based on that allows a space/time control over the regeneration of damaged bones by Medication-Related Osteonecrosis of the Jaw using a minimal invasive approach based on the injection of the fast-degrading pro neuro and angiogenic ELR (Elastin-Like Recombinamers) based hydrogels. Method. Chemical crosslinking facilitated the creation of multi-bioactive scaffolds using ELRs with reactive groups. Cell-loaded multi-bioactive scaffolds, prepared and incubated, underwent evaluation for adhesion, proliferation, angiogenic, and neurogenic potential. In vitro assessments utilized immunofluorescence staining and ELISA assays, while live-recorded monitoring and live-dead analysis ensured cytocompatibility. In rat and rabbit models, preformed scaffolds were subcutaneously implanted, and the regenerative process was evaluated over time. Rabbit models with MRONJ underwent traditional or percutaneous implantation, with histological evaluation following established bone histological techniques. Result. A 3D scaffold using ELR that combines various peptides with different degradation rates to guide both angiogenesis and neurogenesis has been developed. Notably, scaffolds with different degradation rates promoted distinct patterns of vascularization and innervation, facilitating integration with host tissue. This work demonstrates the potential for tailored tissue engineering, where the scaffold's bioactivities and degradation rates can control angiogenesis and neurogenesis. In an animal model of medication-related osteonecrosis of the jaw (MRONJ), the scaffold showed promising results in promoting bone regeneration in a necrotic environment, as confirmed by histological and imaging analyses. This study opens avenues for novel tissue-engineering strategies where precise control over vascularization and nerve growth is crucial. Conclusion. A groundbreaking dual approach, simultaneously targeting angiogenesis and innervation, addresses the necrotic bone in MRONJ syndrome. Vascularization and nerve formation play pivotal roles in driving reparative elements for bone regeneration. The scaffold achieves effective time/space control over necrotic bone regeneration. The authors are grateful for funding from the Spanish Government (PID2020-118669RA-I00)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 33 - 33
17 Apr 2023
Hafeji S Brockett C Edwards J
Full Access

Ligament integrity is directly associated with ankle stability. Nearly 40% of ankle sprains result in chronic ankle instability, affecting biomechanics and potentially causing osteoarthritis. Ligament replacement could restore stability and avoid this degenerative pathway, but a greater understanding of ankle ligament behaviour is required. Additionally, autograft or allograft use is limited by donor-site morbidity and inflammatory responses respectively. Decellularised porcine grafts could address this, by removing cellular material to prevent acute immune responses, while preserving mechanical properties. This project will characterise commonly injured ankle ligaments and damage mechanisms, identify ligament reconstruction requirements, and investigate the potential of decellularised porcine grafts as a replacement material. Several porcine tendons were evaluated to identify suitable candidates for decellularisation. The viscoelastic properties of native tissues were assessed using dynamic mechanical analysis (DMA), followed by ramp to ‘sub-rupture’ at 1% strain/s, and further DMA. Multiple samples (n=5) were taken along the graft to assess variation along the tendon. When identifying suitable porcine tendons, a lack of literature on human ankle ligaments was identified. Inconsistencies in measurement methods and properties reported makes comparison between studies difficult. Preliminary testing on porcine tendons suggested there is little variation in viscoelastic properties along the length of tendon. Testing also suggested strain rates of 1%/s sub-rupture was not large enough to affect viscoelastic properties (no changes in storage or loss moduli or tanẟ). Further testing is underway to improve upon low initial sample numbers and confirm these results, with varying strain rates to identify suitable sub-rupture sprain conditions. This work highlights need for new data on human ankle ligaments to address knowledge gaps and identify suitable replacement materials. Future work will generate this data and decellularise porcine tendons of similar dimensions. Collagen damage will be investigated using histology and lightsheet microscopy, and viscoelastic changes through DMA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 140 - 140
2 Jan 2024
Banfi A
Full Access

Bone regeneration is an area of acute medical need, but its clinical success is hampered by the need to ensure rapid vascularization of osteogenic grafts. Vascular Endothelial Growth Factor (VEGF) is the master regulator of vascular growth and during bone development angiogenesis and osteogenesis are physiologically coupled through so-called angiocrine factors produced by blood vessels. However, how to exploit this process for therapeutic bone regeneration remains a challenge (1). Here we will describe recent work aiming at understanding the cross-talk between vascular growth and osteogenesis under conditions relevant for therapeutic bone regeneration. To this end we take advantage of a unique platform to generate controlled signalling microenvironments, by the covalent decoration of fibrin matrices with tunable doses and combinations of engineered growth factors. The combination of human osteoprogenitors and hydroxyapatite in these engineered fibrin matrices provides a controlled model to investigate how specific molecular signals regulate vascular invasion and bone formation in vivo. In particular, we found that:. 1). Controlling the distribution of VEGF protein in the microenvironment is key to recapitulate its physiologic function to couple angiogenesis and osteogenesis (2);. 2). Such coupling is exquisitely dependent on VEGF dose and on a delicate equilibrium between opposing effects. A narrow range of VEGF doses specifically activates Notch1 signaling in invading blood vessels, inducing a pro-osteogenic functional state called Type H endothelium, that promotes differentiation of surrounding mesenchymal progenitors. However, lower doses are ineffective and higher ones paradoxically inhibit both vascular invasion and bone formation (Figure 1) (3);. 3). Semaphorin3a (Sema3a) acts as a novel pro-osteogenic angiocrine factor downstream of VEGF and it mediates VEGF dose-dependent effects on both vascular invasion and osteogenic progenitor stimulation. In conclusion, vascularization of osteogenic grafts is not simply necessary in order to enable progenitor survival. Rather, blood vessels can actively stimulate bone regeneration in engineered grafts through specific molecular signals that can be harnessed for therapeutic purposes. Acknowledgements: This work was supported in part by the European Union Horizon 2020 Program (Grant agreement 874790 – cmRNAbone). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 59 - 59
17 Apr 2023
Pounds G Liu A Jones A Jennings L
Full Access

The aim of this work was to develop a novel, accessible and low-cost method, which is sufficient to measure changes in meniscal position in a whole-knee joint model performing dynamic motion in a knee simulator. An optical tracking method using motion markers, MATLAB (MATLAB, The MathWorks Inc.) and a miniature camera system (Raspberry Pi, UK) was developed. Method feasibility was assessed on porcine whole joint knee samples (n = 4) dissected and cemented to be used in the simulator (1). Markers were placed on three regions (medial, posterior, anterior) of the medial meniscus with corresponding reference markers on the tibial plateau, so the relative meniscal position could be calculated. The Leeds high kinematics gait profile scaled to the parameters of a pig (1, 2) was driven in displacement control at 0.5 Hz. Videos were recorded at cycle-3 and cycle-50. Conditions tested were the capsule retained (intact), capsule removed and a medial posterior root tear. Mean relative displacement values were taken at time-points relating to the peaks of the axial force and flexion-extension gait inputs, as well as the range between the maximum and minimum values. A one-way ANOVA followed by Tukey post hoc analysis were used to assess differences (p = 0.05). The method was able to measure relative meniscal displacement for all three meniscal regions. The medial region showed the greatest difference between the conditions. A significant increase (p < 0.05) for the root tear condition was found at 0.28s and 0.90s (axial load peaks) during cycle-3. Mean relative displacement for the root tear condition decreased by 0.29 mm between cycle-3 and cycle-50 at the 0.28s time-point. No statistically significant differences were found when ranges were compared at cycle-3 and cycle-50. The method was sensitive to measure a substantial difference in medial-lateral relative displacement between an intact and a torn state. Meniscus extrusion was detected for the root tear condition throughout test duration. Further work will progress onto human specimens and apply an intervention condition


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 89 - 89
2 Jan 2024
Runzer C Sadowska J Plank C O'Brien F van Griensven M Balmayor E
Full Access

Bone morphogenetic proteins (BMPs) have been widely investigated for treating non-healing fractures. They participate in bone reconstruction by inducing osteoblast differentiation, and osteoid matrix production. 1. The human recombinant protein of BMP-7 was among the first growth factors approved for clinical use. Despite achieving comparable results to autologous bone grafting, severe side effects have been associated with its use. 2. Furthermore, BMP-7 was removed from the market. 3. These complications are related to the high doses used (1.5-40 miligrams per surgery). 2. compared to the physiological concentration of BMP in fracture healing (in the nanogram to picogram per milliliter range). 4. In this study, we use transcript therapy to deliver chemically modified mRNA (cmRNA) encoding BMP-7. Compared to direct use of proteins, transcript therapy allows the sustained synthesis of proteins with native conformation and true post-translational modifications using doses comparable to the physiological ones. 5. Moreover, cmRNA technology overcomes the safety and affordability limitations of standard gene therapy i.e. pDNA. 6. BMP-7 cmRNA was delivered using Lipofectamine™ MessengerMAX™ to human mesenchymal stromal cells (hMSCs). We assessed protein expression and osteogenic capacity of hMSCs in monolayer culture and in a house-made, collagen hydroxyapatite scaffold. Using fluorescently-labelled cmRNA we observed an even distribution after loading complexes into the scaffold and a complete release after 3 days. For both monolayer and 3D culture, BMP-7 production peaked at 24 hours post-transfection, however cells transfected in scaffolds showed a sustained expression. BMP-7 transfected hMSCs yielded significantly higher ALP activity and Alizarin red staining at later timepoints compared to the untransfected group. Interestingly, BMP-7 cmRNA treatment triggered expression of osteogenic genes like OSX, RUNX-2 and OPN, which was also reflected in immunostainings. This work highlights the relevance of cmRNA technology that may overcome the shortcomings of protein delivery while circumventing issues of traditional pDNA-based gene therapy for bone regeneration. Acknowledgement: This work has been performed as part of the cmRNAbone project and has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 874790


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 15 - 15
17 Nov 2023
Mondal S Mangwani J Brockett C Gulati A Pegg E
Full Access

Abstract. Objectives. This abstract provides an update on the Open Ankle Models being developed at the University of Bath. The goal of this project is to create three fully open-source finite element (FE) ankle models, including bones, ligaments, and cartilages, appropriate musculoskeletal loading and boundary conditions, and heterogeneous material property distribution for a standardised representation of ankle biomechanics and pre-clinical ankle joint analysis. Methods. A computed tomography (CT) scan data (pixel size of 0.815 mm, and slice thickness of 1 mm) was used to develop the 3D geometry of the bones (tibia, talus, calcaneus, fibula, and navicular). Each bone was given the properties of a heterogeneous elastic material based on the CT greyscale. The density values for each bone element were calculated using a linear empirical relation, ρ= 0.0405 + (0.000918) HU and then power law equations were utilised to get the Young's Modulus value for each bone element [1]. At the bone junction, a thickness of cartilage ranging from 0.5–1 mm, and was modelled as a linear material (E=10 MPa, ν=0.4 [2]). All ligament insertions and positions were represented by four parallel spring elements, and the ligament stiffness and material attributes were applied in accordance with the published literature [2]. The ankle model was subjected to static loading (balance standing position). Four noded tetrahedral elements were used for the discretization of bones and cartilages. All degrees of freedom were restricted at the proximal ends of the tibia and fibula. The ground reaction forces were applied at the underneath of the calcaneus bone. The interaction between the cartilages and bones was modelled using an augmented contact algorithm with a sliding elastic contact between each cartilage. A tied elastic contact was used between the cartilages and the bone. FEbio 2.1.0 (University of Utah, USA) was used to construct the open-source ankle model. Results. When the double-legged stance phase loading condition was taken into consideration, stress at the antero-medial tibial wall (ranged from 1 to 7 MPa) was found to be similar to the prior work [2], indicating bulk of the load transfer was through this region. The maximum principal strain was predicted at the different regions on bones around the ankle joint. The proximal surface of the talus, and tibial distal surface were shown to have the highest maximum principal strains followed by antero-medial walls of the tibia bone, at the proximal location. Conclusions. The present open 3D FE model of the ankle will assist researchers in better understanding ankle biomechanics, precisely predicting load transfer, and examining the ankle to address unmet clinical needs for this joint. The results of the current investigation are realistic in terms of load transfer and stress-strain distribution across the ankle joint and well comparable to those reported in the literature [2]. However, sensitivity and ankle instability simulations will be performed in future work to investigate the model's reliability and robustness. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 14 - 14
1 Dec 2022
Ghezzi D Baldini N Graziani G Cappelletti M
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results. In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs. We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible future applications for orthopedic protheses manufacturing


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 99 - 99
2 Jan 2024
Johansen Å Lin J Yamada S Yassin MA Hutchinson D Malkoch M Mustafa K
Full Access

Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical linkages and end-groups widens the scope of the materials due to a range of mechanical properties. The aim of our work is to investigate novel TATO based materials, with or without hydroxyapatite filler, for their potential in bone tissue engineering constructs. Initially the biocompatibility of the materials was tested, indirectly and directly, according to ISO standards. Following this the osteoconductive properties were investigated with primary osteoblasts and an osteoblastic cell line. Bone marrow derived mesenchymal stem cells were used to evaluate the osteogenic differentiation and consequently the materials potential in bone tissue engineering applications