header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

ANKLE LIGAMENT REPAIR FOR RESTORATION OF FUNCTION: EXPLORING THE APPLICATION OF DECELLULARIZED GRAFTS

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 3 of 3.



Abstract

Ligament integrity is directly associated with ankle stability. Nearly 40% of ankle sprains result in chronic ankle instability, affecting biomechanics and potentially causing osteoarthritis. Ligament replacement could restore stability and avoid this degenerative pathway, but a greater understanding of ankle ligament behaviour is required. Additionally, autograft or allograft use is limited by donor-site morbidity and inflammatory responses respectively. Decellularised porcine grafts could address this, by removing cellular material to prevent acute immune responses, while preserving mechanical properties.

This project will characterise commonly injured ankle ligaments and damage mechanisms, identify ligament reconstruction requirements, and investigate the potential of decellularised porcine grafts as a replacement material.

Several porcine tendons were evaluated to identify suitable candidates for decellularisation. The viscoelastic properties of native tissues were assessed using dynamic mechanical analysis (DMA), followed by ramp to ‘sub-rupture’ at 1% strain/s, and further DMA. Multiple samples (n=5) were taken along the graft to assess variation along the tendon.

When identifying suitable porcine tendons, a lack of literature on human ankle ligaments was identified. Inconsistencies in measurement methods and properties reported makes comparison between studies difficult.

Preliminary testing on porcine tendons suggested there is little variation in viscoelastic properties along the length of tendon. Testing also suggested strain rates of 1%/s sub-rupture was not large enough to affect viscoelastic properties (no changes in storage or loss moduli or tanẟ). Further testing is underway to improve upon low initial sample numbers and confirm these results, with varying strain rates to identify suitable sub-rupture sprain conditions.

This work highlights need for new data on human ankle ligaments to address knowledge gaps and identify suitable replacement materials. Future work will generate this data and decellularise porcine tendons of similar dimensions. Collagen damage will be investigated using histology and lightsheet microscopy, and viscoelastic changes through DMA.


*Email: