Introduction. Persistent patellofemoral (PF) pain is a common postoperative complication after total knee arthroplasty (TKA). In the USA, patella resurfacing is conducted in more than 80% of primary TKAs [1], and is, therefore, an important factor during surgery. Studies have revealed that the position of the patellar component is still controversially discussed [2–4]. However, only a limited number of studies address the biomechanical impact of patellar component malalignment on PF dynamics [2]. Hence, the purpose of our present study was to analyze the effect of patellar component positioning on PF dynamics by means of musculoskeletal multibody simulation in which a detailed knee joint model resembled the loading of an
Introduction. Total knee arthroplasty (TKA) designs evolve as evidence accumulates on natural and prosthetic knee function. TKA designs based upon a medially conforming tibiofemoral articulation seek to reproduce essential aspects of normal knee stability and have enjoyed good clinical success and high patient satisfaction for over two decades. Fluoroscopic kinematic studies on several medially conforming knee designs show extremely stable knee function, but very small ranges of tibial axial rotation compared to healthy knees. The GMK Sphere TKA is a recent evolution in medially-conforming TKA designs that adopts a sagittally
Total shoulder arthroplasty has been shown to be a very effective means of restoring function in all forms of arthritic shoulders. However, much as with any form of arthroplasty, problems and complications can and do occur. These include infection, nerve injury, anesthetic complications, peri-prosthetic fracture, instability and dislocation, nerve and vascular injury, loosening, loss of mobility, and contracture or stiffness, and implant related failures. Careful pre-operative planning, intra-operative technical execution, and post-operative rehabilitation all designed to meet the needs and demands of the specific patient can help identify potential sources of complications pre-operatively and avoid them post-operatively. Understanding the specific complexities of the type of arthritis being addressed, the strengths and weaknesses, limitations and need for adjustments to the local anatomy can help the surgeon execute the total shoulder arthroplasty with minimal likelihood for post-operative complications. Awareness of patient's own flora and application of appropriate antibiotic prophylaxis can help identify patients at risk for infection. Although it is impossible to fully eliminate the occurrence of complications, a majority can be avoided through attention to detail.
Analyzing shoulder kinematics is challenging as the shoulder is comprised of a complex group of multiple highly mobile joints. Unlike at the elbow or knee which has a primary flexion/extension axis, both primary shoulder joints (glenohumeral and scapulothoracic) have a large range of motion (ROM) in all three directions. As such, there are six degrees of freedom (DoF) in the shoulder joints (three translations and three rotations), and all these parameters need to be defined to fully describe shoulder motion. Despite the importance of glenohumeral and scapulothoracic coordination, it's the glenohumeral joint that is most studied in the shoulder. Additionally, the limited research on the scapulothoracic primarily focuses on planar motion such as abduction or flexion. However, more complex motions, such as internally rotating to the back, are rarely studied despite the importance for activities of daily living. A technique for analyzing shoulder kinematics which uses 4DCT has been developed and validated and will be used to conduct analysis. The objective of this study is to characterize glenohumeral and scapulothoracic motion during active internal rotation to the back, in a healthy young population, using a novel 4DCT approach. Eight male participants over 18 with a healthy shoulder ROM were recruited. For the dynamic scan, participants performed internal rotation to the back. For this motion, the hand starts on the abdomen and is moved around the torso up the back as far as possible,
Introduction. The interaction between the mobile components of total elbow replacements (TER) provides additional constraint to the elbow motion. Semi-constrained TER depend on a mechanical linkage to avoid dislocation and have greater constraint than
The dual mobility hip incorporates a femoral head mated within a spherical polyethylene liner which also has an
Introduction. Total ankle replacements (TAR) are a much debated alternative to ankle fusion for treatment of end stage arthritis. Compared with hip and knee replacements these are implanted in small numbers with less than 500 per year recorded by the joint registry for England and Wales. The small numbers are a likely result of typically low mid-term survival rates, as well as extensive contra-indications for surgery. There have been multiple generations of TARs consisting of both constrained and
Cervical total disc replacement has been in practice for years now as a viable alternative to cervical fusion in suitable cases, aspiring to preserve spinal motion and prevent adjacent segment disease. Reports are rife that neck pain emerges as an annoying feature in the early postoperative period. The facet joint appears to be the most likely source of pain. 50 patients were prospectively followed up through 5 years after having received disc replacement surgery, indicated for symptomatic soft disc herniation of the cervical spine presenting with radiculopathy. • All were skeletally mature and aged between 22 to 50. • All had failed a minimum of 6 months conservative therapy. • Up to 2 disc levels were addressed. C3 till C7 levels. • Single surgeon (first author). • NDI > 30% (15/50). • Deteriorating radicular neurology. We excluded those with degenerative trophic changes of the cervical spine, focal instability, trauma, osteoporosis, previous cervical spine surgery, previous infection, ossifying axial skeletal disease and inflammatory spondyloarthritides. The device used was an
Abductor deficiency after THA can result from proximal femoral bone loss, trochanteric avulsion, muscle destruction associated with infection, pseudotumor, ALTR to metal debris, or other causes. Whiteside has described a transfer of the tensor muscle and anterior gluteus maximus to the greater trochanter for treatment of absent abductors after THA. Transposition of the tensor muscle requires raising an anterior soft tissue flap to the lever of the interval between the tensor muscle and sartorius, which is the same interval used in an anterior approach to the hip. The muscle is transected distally and transposed posteriorly to attach to the proximal femur. This can result in soft tissue redundancy between the posterior tensor muscle and anterior gluteus maximus. This interval is separated and the anterior gluteus maximis also attached to the proximal femur. Relatively large
Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing. Methods. Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left
INTRODUCTION. Proper ligament engagement is an important topic of discussion for total knee arthroplasty; however, its importance to total ankle arthroplasty (TAA) is uncertain. Ligaments are often lengthened or repaired in order to achieve balance in TAA without an understanding of changes in clinical outcomes.
Introduction. Ligament reconstruction following knee soft tissue injuries, such as posterior cruciate ligament (PCL) tears, aim to restore normal joint function and motion; however, persistant pathomechanical joint behavior indicates that there is room for improvement in current reconstruction techniques. Increased attention is being directed towards the roles of secondary knee stabilizers, in an attempt to better understand their contributions to kinematics of knees. The objective of this study is to characterize the relative biomechanical contributions of the posterior oblique ligament (POL) and the deep medial collateral ligament (dMCL) in PCL-deficient knees. We hypothesized that, compared with the POL, the dMCL would have a more substantial role in stabilizing the medial side of the knee, especially in flexion (slack POL). Methods. Seven fresh-frozen cadaveric knees were used in this study (age 40–62, 4 female, 3). Specimens were potted and mounted onto a VIVO joint motion simulator (AMTI). Once installed, specimens were flexed from 0 to 90 degrees with a 10 N axial load and all remaining degrees of freedom
INTRODUCTION. Mechanical properties mapping based on CT-attenuation is the basis of finite element (FE) modeling with heterogeneous materials and bone geometry defined from clinical-resolution CT scans. Accuracy between empirical and computational models that use constitutive equations relating CT-attenuation to bone density are well described, but material mapping strategy has not gained similar attention. As such, the objective of this study was to determine variations in the apparent modulus of trabecular bone cores mapped with various material mapping strategies, using a validated density-modulus relationship and co-registered µFEMs as the gold standard. METHODS. Micro-CT images (isotropic 32 µm) were used to create µFEMs from glenoid trabecular bone cores of 14 cadaveric scapula. Each µFEM was loaded in
Introduction. In total knee arthroplasty (TKA) the knee may be found to be too stiff in extension, causing a flexion contracture. One proposed surgical technique to correct this extension deficit is to recut the distal femur, but that may lead to excessively raising the joint line. Alternatively, full extension may be gained by stripping the posterior capsule from its femoral attachment, however if this release has an adverse impact on anterior-posterior (AP) stability of the implanted knee then it may be advisable to avoid this technique. The aim of the study was therefore to investigate the effect of posterior capsular release on AP stability in TKA, and compare this to the restraint from the cruciate ligaments and different TKA inserts. Methods. Eight cadaveric knees were mounted in a six degree of freedom testing rig (Fig.1) and tested at 0°, 30°, 60° and 90° flexion with ±150 N AP force, with and without a 710 N axial compressive load. The rig allowed an AP drawer to be applied to the tibia at a fixed angle of flexion, whilst the other degrees-of-freedom were
Introduction. Pre-clinical assessment of total knee replacements (TKR) can provide useful information about the constraint provided by an implant, and therefore help the surgeon decide the most appropriate configurations. For example, increasing the posterior tibial slope is believed to delay impingement in deep flexion and thus increase the maximal flexion angle of the knee, however it is unclear what effect this has on anterior-posterior (AP) constraint. The current ASTM standard (F1223) for determining constraint gives little guidance on important factors such as medial- lateral (M:L) loading distribution, flexion angle or coupled secondary motions. Therefore, the aim of the study was to assess the sensitivity of the ASTM standard to these variations, and investigate how increasing the posterior tibial slope affects TKR constraint. Methods. Using a six degree of freedom testing rig, a cruciate-retaining TKR (Legion; Smith & Nephew) was tested for AP translational constraint. In both anterior and posterior directions, the tibial component was displaced until a ‘dislocation limit’ was reached (fig. 1), the point at which the force-displacement graph started to plateau (fig. 2). Compressive joint loads from 710 to 2000 N, and a range of medial-lateral (M:L) load distributions, from 70:30% to 30:70% M:L, were applied at different flexion angles with secondary motions
Management of a knee with valgus deformities has always been considered a major challenge. Total knee arthroplasty requires not only correction of this deformity but also meticulous soft tissue balancing and achievement of a balanced rectangular gap. Bony deformities such as hypoplastic lateral condyle, tibial bone loss, and malaligned/malpositioned patella also need to be addressed. In addition, external rotation of the tibia and adaptive metaphyseal remodeling offers a challenge in obtaining the correct rotational alignment of the components. Various techniques for soft tissue balancing have been described in the literature and use of different implant options reported. These options include use of cruciate retaining, sacrificing, substituting and constrained implants. Purpose. This presentation describes options to correct a severe valgus deformity (severe being defined as a femorotibial angle of greater than 15 degrees) and their long term results. Methods. 34 women (50 knees) and 19 men (28 knees) aged 39 to 84 (mean 74) years with severe valgus knees underwent primary TKA by a senior surgeon. A valgus knee was defined as one having a preoperative valgus alignment greater than 15 degrees on a standing anteroposterior radiograph. The authors recommend a medial approach to correct the deformity, a minimal medial release and a distal femoral valgus resection of angle of 3 degrees. We recommend a sequential release of the lateral structures starting anteriorly from the attachment of ITB to the Gerdy's tubercle and going all the way back to the posterolaetral corner and capsule. Correctability of the deformity is checked sequentially after each release. After adequate posterolateral release, if the tibial tubercle could be rotated past the mid-coronal plate medially in both flexion and extension, it indicated appropriate soft tissue release and balance. Fine tuning in terms of final piecrusting of the ITB and or popliteus was carried out after using the trial components. Valgus secondary to an extra-articular deformity was treated using the criteria of Wen et al. In our study the majority of severe valgus knees (86%) could be treated by using
Introduction. Total knee arthroplasty (TKA) is the second most common and successful joint replacement in orthopedics. Due to long-term results the problem of aseptic loosening, implant failure and hypersensitivity to metal ions remain. Therefore the introduction of a new TKA with ceramic tibial and femoral components is introduced. Methods. It is the aim of this prospective study to compare a full delta ceramic
Treatment of recurrent dislocation: approximately: 1/3 of failures (probably higher in the absence of a clear curable cause). In the US: most popular treatment option: constrained liners with high redislocation and loosening rates in most reports. Several interfaces leading to various modes of failures. In Europe: dual mobility cups (or tripolar unconstrained): first design Gilles Bousquet 1976 (Saint Etienne, France), consisting of a metal shell with a highly polished inner surface articulating with a mobile polyethylene insert (large articulation). The femoral head is captured into the polyethylene (small articulation) using a snap fit type mechanism leading to a large effective
Total knee arthroplasty (TKA) is widely accepted as a successful treatment option for the pain and limitation of function associated with severe joint disease. The ideal knee arthroplasty implant should provide reliable pain relief and normal levels of functional strength and range of motion. However, there are still a number of implant-specific problems following knee arthroplasty, such as irregular kinematics, polyethylene wear and poor range of motion. MRI and cadaveric studies have highlighted important kinematics during movement of the native knee. In particular, flexion of the joint results in a phenomenon referred to as “roll back and slide”. This essentially describes posterior translation of the femur on the tibia which in turn has a two-fold biomechanical function: to increase the lever arm of the quadriceps and allow clearance of the femur from the tibia in deep flexion. During extension of the joint, the femur rolls forward increasing the lever arm of the hamstrings to act as a brake on hyperextension. Additional rotation of the joint arises in the axial plane. This is attributed to the concave tibial plateau and relatively fixed meniscus on the medial compartment of the joint in comparison to a lateral convex plateau with a mobile meniscus. This asymmetry allows axial rotation of the lateral compartment over the medial compartment by up to 30 degrees. Subsequently, from extension to full flexion the tibia rotates internally on the femur and vice versa. The external rotation of the tibia on the femur that occurs during the terminal degrees of knee extension is often referred to as the “screw home mechanism” and results in tightening of both the cruciate ligaments locking the knee such that the tibia is in a position of maximum stability on the femur. Numerous studies over the past two decades have characterised the in-vivo motions of knee replacements. Major conclusions from these studies are that the motion after knee arthroplasty generally does not replicate normal knee motions. In particular, many kinematic studies of
Wrist motion is achieved primarily via rotation at the radiocarpal and midcarpal joints. The contribution of each carpal bone to total range of motion has been previously investigated, although there is no consensus regarding the influence of each structure to global wrist motion. The objective of this comprehensive in-vitro biomechanical study was to determine the kinematics of the capitate, scaphoid and lunate during