header advert
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 39 - 39
1 May 2017
Gee C Poole W Wilson D Gibbs J Stott P
Full Access

Adverse reaction to metal debris (ARMD) is well recognised as a complication of large head metal on metal total hip replacement (THR) leading to pain, bone and tissue loss and the need for revision surgery. An emerging problem of trunnionosis in metal on polyethylene total hip replacements leading to ARMD has been reported in a few cases. Increased metal ion levels have been reported in THR's with a titanium stem and a cobalt chrome head such as the Accolade-Trident THR (Stryker). We present 3 cases of ARMD with Accloade-Trident THR's with 36mm cobalt chrome head and a polyethylene liner. Metal ion levels were elevated in all three patients (cobalt 10.3 – 161nmol/l). Intraoperative tissue samples were negative for infection and inflammatory markers were normal. Abnormal fluid collections were seen in all three cases and bone loss was severe in one patient leading to a proximal femoral replacement. Histology demonstrated either a non-specific inflammatory reaction in a case which presented early or a granulomatous reaction in a more advanced case suggesting a local foreign body reaction. All patients had improved symptoms post-operatively. 1 patient who had staged bilateral Accolade-Trident THR's required revision of both THR's. ARMD in metal on polyethylene THR's with a titanium stem represents a potential emerging problem. Further studies are required to assess whether these occurrences are rare or represent the tip of an iceberg


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 41 - 41
1 Jul 2014
Grosse S Høl P Lilleng P Haugland H Hallan G
Full Access

Summary. Particulate wear debris with different chemical composition induced similar periprosthetic tissue reactions in patients with loosened uncemented and cemented titanium hip implants, which suggests that osteolysis can develop independent of particle composition. Introduction. Periprosthetic osteolysis is a serious long-term complication in total hip replacements (THR). Wear debris-induced inflammation is thought to be the main cause for periprosthetic bone loss and implant loosening. The aim of the present study was to compare the tissue reactions and wear debris characteristics in periprosthetic tissues from patients with failed uncemented (UC) and cemented (C) titanium alloy hip prostheses. We hypothesised that implant wear products around two different hip designs induced periprosthetic inflammation leading to osteolysis. Patients & Methods. Thirty THR-patients undergoing revision surgery were included: Fifteen patients had loose cemented titanium stems (Titan. ®. , DePuy) and 15 had well-fixed uncemented titanium stems (Profile, DePuy), but loose or worn uncemented metal-backed cups with conventional UHMWPE liners (Gemini, Tropic and Tri-Lock Plus, DePuy; Harris/Galante and Trilogy, Zimmer). A semi-quantitative histological evaluation was performed in 59 sections of periprosthetic tissues using light microscopy. Wear particles were counted by polarised light and high resolution dark-field microscopy. Additionally, particle composition was determined by SEM-EDXA following particle isolation using an enzymatic digestion method. Blood metal ions were determined with high resolution-ICP-MS. Results. The implants in the uncemented group were revised after a median of 15.7 years (range: 7.25–19.3) due to osteolysis and high wear of the polyethylene liner and metal backing resulting in gross metallosis, and/or cup loosening. The average lifetime of implants in the cemented group was only 6.5 years (range: 1.5–11.75) due to early stem loosening with large osteolysis pockets in the femur close to the cement mantle. Tissue examination revealed similar results for both groups: numerous mononuclear histiocytes and chronic inflammatory cells, a few neutrophils and multinucleated giant cells, and to some extent necrosis. The amount of metal particles per histiocyte positively correlated with the tissue reactions in the cemented, but not in the uncemented group. A higher particle load (medians: C: 14727 vs. UC: 1382 particles/mm. 2. , p<0.0001) was found in tissues adjacent to cemented stems, which contained mainly submicron ZrO. 2. particles. Particles containing pure Ti or Ti alloy elements (size range: 0.21 to 6.46 µm) were most abundant in tissues from the uncemented group. Here, also PE was more frequent, but accounted only for a small portion of total particles (2.8 PE/mm. 2. ). The blood concentrations of titanium (range: 3.8–138.5 microgram/L) and zirconium (cemented cases, range: 0.6–3.5 microgram/L) were highly elevated in cases with high abrasive wear and metallosis. Discussion/Conclusion. Phagocytosis of different wear particles by histiocytes induced a similar chronic inflammatory reaction in the periprosthetic tissues in both groups. ZrO. 2. particles, originating from bone cement degradation, dominated in the cemented group, while in the uncemented group the high abundance of pure Ti and Ti alloy particles of various sizes indicates wear of the metal-backed cups. The low density of polyethylene particles in the tissues suggests that they are not solely responsible for the tissue reactions and accompanying osteolysis. Our findings suggest that the chemical composition of wear particles plays a minor role in the mechanism of osteolysis. Particle size, load and ionic exposure might be more important


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 139 - 139
1 Jul 2014
Ayers D Snyder B Porter A Walcott M Aubin M Drew J Greene M Bragdon C
Full Access

Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral implant stability is essential to long-term success in total hip replacement. Radiostereometric analysis (RSA) provides precise measurements of micromotion of the stem relative to the femur that are otherwise not detectable by routine radiographs. This study characterised micromotion of a tapered, cementless femoral stem and tantalum porous-coated vs. titanium acetabular shells in combination with highly cross-linked UHMWPE or conventional polyethylene liners using radiostereometric analysis (RSA) for 5 years following THR. Patients and Methods. This IRB-approved, prospective, double randomised, blinded study, involved 46 patients receiving a primary THR by a single surgeon. Each patient was randomised to receive a titanium (23) (Trilogy, Zimmer) or tantalum (23) (Modular Tantalum shell, Zimmer) uncemented hemispheric shell and either a highly-crosslinked or conventional polyethylene liner. Tantalum RSA markers were implanted in each patient. All patients had a Dorr A or B femoral canal and received a cementless, porous-coated titanium tapered stem (M/L Taper, Zimmer). All final femoral broaches were stable to rotational and longitudinal stress. RSA examinations, Harris Hip, UCLA, WOMAC, SF-12 scores were obtained at 10 days, 6 months, and annually through 5 years. Results. All patients demonstrated statistically significant improvement in Harris Hip, WOMAC, and SF-12 PCS scores post-operatively. Evaluation of polyethylene wear demonstrated that median penetration measurements were significantly greater in the conventional compared to the HXPLE liner cohorts at 1 year through 5 years follow-up (p<0.003). At 5 years, conventional liners showed 0.38 ± 0.05mm vertical wear whereas HXLPE liners showed 0.08 ± 0.02mm (p<0.003). Evaluation of the femoral stems demonstrated that the rate of subsidence was highest in the first 6 months (0.09mm/yr), with no other detectable motion through 5 years. Two outlying patients had significantly higher stem subsidence values at 6 months (0.7 mm and 1.0mm). One stem stabilised without further subsidence after 6 months (0.7mm), and the other stem stabilised at 1 year (1.5mm). Neither patient has clinical evidence of loosening. Evaluation of acetabular shells demonstrated less median vertical translation in tantalum than titanium shells at each time-point except at 3-years follow-up, however due to large standard errors, there was no significant difference between the two designs (p>0.05). These large standard errors were predominantly caused by two outliers, neither of which had clinical evidence of loosening. Discussion/Conclusion. In this RSA study of young THR patients, cementless tapered femoral stems, highly crosslinked polyethylene liners, and tantalum or titanium acetabular shells all demonstrated excellent performance through 5 years follow-up. Highly crosslinked polyethylene liners demonstrated significantly less wear than conventional liners. The femoral stem showed excellent stability through 5 years, with no clinical or radiologic episodes of failure. The small amount of micromotion seen is less than that previously reported for similar tapered, cementless stems and approaches the accuracy of RSA (0.05mm). Both acetabular shells demonstrated excellent stability with minimal micromotion at 5 years without significant differences in migration. All patients demonstrated significant clinical improvement in pain and function and additional RSA evaluation of these patients is planned


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 80 - 80
1 Jul 2014
Jauch S Ng L Peirce S Dhokia V Miles A Gill H
Full Access

Summary. The required torque leading to an abrasion of the passive layer in the stem-head interface positively correlates to the assembly force. In order to limit the risk of fretting and corrosion a strong hammer blow seems to be necessary. Introduction. Modular hip prostheses are commonly used in orthopaedic surgery and offer a taper connection between stem and ball head. Taper connections are exposed to high bending loads and bear the risk of fretting and corrosion, as observed in clinical applications. This is particularly a problem for large diameter metal bearings as the negative effects may be enhanced due to the higher moments within the taper connection. Currently, it is not known how much torque is required to initiate a removal of the passive layer, which might lead to corrosion over a longer period and limits the lifetime of prostheses. Therefore, the purpose of this study was to identify the amount of torque required to start an abrasion of the passive layer within the interface dependent on the assembly force and the axial load. Materials and Methods. Titanium hip stems (Furlong H-AC, JRI, UK) and cobalt-chromium heads (⊘ 28mm, size L, JRI, UK) were assembled using a drop rig with peak forces of 4.5 kN (F. P,1. , n = 4) or 6.0 kN (F. P,2. , n = 4). The prostheses were inverted and then mounted with the head rigidly fixed to the base of a materials testing machine using a non-conducting (nylon) jig while submerged in Ringer's solution. The stems were attached to the machine actuator via non-conductive plates. An axial load (F. A,1. = 1 kN, F. A,2. = 3 kN, n = 4 each) was applied to the stems along the taper axis. After a period of equilibration a torque, increasing from 0 up to 15Nm, was manually applied. The galvanic potential at the taper interface was continuously recorded using a titanium electrode. The torque required to cause a drop in the potential of 5% was identified. For statistical analyses non-parametric tests were performed (α = 0.05). Results. Four different phases of the potential could be clearly differentiated during testing: equilibrium, removal of the passive layer leading to a drop of the potential, repassivation and then a second equilibrium. Prostheses assembled with a force of 6 kN required a significantly higher torque to start a removal of the passive layer compared to those with 4.5 kN (7.2 ± 0.5 Nm vs. 3.9 ± 1.0 Nm for F. A,1. , p = 0.029). In contrast, no influence of the axial load on the fretting behaviour of the prostheses could be found (8.0 ± 1.6 Nm for F. P,2. , p = 0.486). Discussion. Changes in the galvanic potential were observed at low torque levels for a small head diameter. With increasing head diameter the tangential force leading to a removal of the passive layer in the stem-head interface decrease resulting in a higher risk for corrosion. Component assembly with a high force reduces the risk of fretting and corrosion in the taper interface; however, it is feasible that the determined torque levels can still be reached, particularly in situations of large weight and high activity of the patient or malpositioning of the prosthesis in the body


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives

Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces.

Methods

In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation.

We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement.

Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.