Cementless fixation is an alternative to cemented unicompartmental knee replacement (UKR), with several advantages over cementation. This study reports on the 15-year survival and 10-year clinical outcomes of the cementless Oxford unicompartmental knee replacement (OUKR). This prospective study describes the clinical outcomes and survival of first 693 consecutive cementless medial OUKRs implanted in New Zealand. The sixteen-year survival was 89.2%, with forty-six knees being revised. The commonest reason for revision was progression of arthritis, which occurred in twenty-three knees, followed by primary dislocation of the bearing, which occurred in nine knees. There were two bearing dislocations secondary to trauma and a ruptured ACL, and two tibial plateau fractures. There were four revisions for polyethylene wear. There were four revisions for aseptic
Background. Obesity has been linked with increased rates of knee osteoarthritis. Limited information is available on the survival and functional outcome results of rTKR in the obese patients. This registry-based study aimed to identify whether BMI is an independent risk factor for poorer functional outcomes and /or implant survival in rTKA. Methods. New Zealand Joint Registry (NZJR) data of patients who underwent rTKA from 1st January 2010 to January 2023 was performed. Demographics, American Society of Anesthesiologists (ASA), BMI, Operative time, indications for revision and components revised of the patients undergoing rTKA was collected. Oxford knee score (OKS) at 6 months and rates of second revision (re- revision) were stratified based on standardised BMI categories. Results. Of the 2687 revisions, functional outcome scores were available for 1261 patients. Oxford knee scores following rTKA are significantly inferior in higher BMI patients (36.5 vs 31.5 p<0.001). This held true when adjusted for age (35.7 vs 30.9 p<0.001).
We report long-term results of the first non-designer study of the HA coated Unix UKR. 85 consecutive UKR's were carried out between 1998 and 2002 using the Unix cementless HA coated UKR. 7 were lost to follow up, 6 were deceased and 6 had undergone revision. The remainder had a mean follow-up of 10 years (range 8–13). Oxford Knee Scores, WOMAC questionnaire and radiological assessment were carried out. Average age at surgery was 65 years. The mean Oxford Knee Score was 38.56 (13–48) with 67% scoring over 40, the mean WOMAC Score was 20.16 (0–72) with 58% scoring under 15. Survivorship analysis showed a survival rate of 95% with aseptic loosening as the end-point. Radiographic assessment was carried out by the senior author and an independent radiologist and showed lysis around the tibial base plate in 6% of patients with no lysis evident around the central fin region. The Unix UKR has the unique design of a central horizontal fin inserting under the tibial spine. The survivorship results from this study confirm those of Epinette's showing 100% survivorship at 13 years. Australian Joint Registry data shows high revision rates for UKR's mainly due to
Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion preoperatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 modular fixed-bearing, 4 metal-backed nonmodular fixed-bearing, 8 resurfacing onlay, 10 all-polyethylene step-cut, and 19 mobile bearing designs; 5 knees failed due to infection, 5 due to wear and/or instability, 10 for pain or progression of arthritis, 8 for tibial fracture or severe subsidence, and 22 due to loosening of either one or both components. Insert thickness was no different between implants or failure modes. Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (average age: 66 years) performed from 1995 to 2009 with a minimum 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (2–262). The four most common reasons for failure were femoral or
Answering the question of what the patient can teach us about the future of joint replacement starts with a look to the past. The modern era of total joint replacement began in the late 1950's with the pioneering work of John Charnley that established the fundamental structure of a total joint replacement with a metal component bearing against polyethylene and provided many disabled patients with a substantial improvement in function. As the application of joint replacement expanded to a broader patient population it became apparent that a better understanding of the mechanics of patient function was needed to provide more rigorous design criteria and objective assessment of design changes. This presentation will examine how improvements in total knee replacement has been aided by objective measures of ambulatory function and the potential for future improvements in joint replacement that can be based on information from testing patients. Specifically, from a historical viewpoint one of the major problems limiting the use of total knee replacement in the 1970's was
Introduction. With the introduction of minimally invasive surgery techniques and improved polyethylene wear properties, there has been a renewed interest in Unicondylar Knee Replacements (UKR). Customized, Individually Made (CIM) UKR have been in the market for some time, and have shown to provide improved coverage and fit. The purpose of this study was to assess clinical and patient-reported outcomes utilizing CIM-UKR prostheses. Methods. A prospectively recruited cohort of 118 patients was implanted with 120 CIM-UKR (110 medial/10 lateral) at multiple centers across the US. Patients were diagnosed with uni-compartmental osteoarthritis of the medial or lateral compartment. Patients with compromised cruciate or collateral ligaments or having a varus/valgus deformity <15. °. were excluded. Patients were assessed for Knee Society Knee and Function Scores, WOMAC & ROM pre-operatively (120 patients), at 6-weeks post-op (119), 6-months post-op (71 optional visit), 1 year post-op (113) and 2 years post-operatively (96). For the 3 and 4 year post-operative time points, patients were contacted to report on any possible adverse events. Results. Range-of-motion was improved from 120. °. pre-operatively to 131. °. at 2 years post-op. Patients demonstrated marked improvements from baseline scores across all domains. All patients have passed their 2-year follow up visit to date. Average KSS Knee Scores significantly improved from their preoperative levels to 95 at the 2-years follow-up visit. KSS Function domain scores significantly improved from pre-operative levels to 91 at the 2 year time-point. Similar improvements were noted in the WOMAC score, which was reported to be 89 at the 2 year time point. Average VAS Pain scores at the 2 year visit was 1.3. To date, at an average follow-up of 3.1 years there have been 2 patients revised for
Background. Use of a robotic tool to perform surgery introduces a risk of unexpected soft tissue damage due to the uncommon tactile feedback for the surgeon. Early experience with robotics in total hip and knee replacement surgery reported having to abort the procedure in 18–34 percent of cases due to inability to complete preoperative planning, hardware and soft tissue issues, registration issues, as well as concerns over actual and potential soft tissue damage. These can result in significant morbidity to the patient, negating all the desired advantages of precision and reproducibility with robotic assisted surgery. The risk of soft tissue damage can be mitigated by haptic software prohibiting the cutting tip from striking vital soft tissues and by the surgeon making sure there is a clear workspace path for the cutting tool. This robotic total knee system with a semi-active haptic guided technique was approved by the FDA on 8/5/2015 and commercialized in August of 2016. Two year clinical results have not been reported to date. Objective. To review an initial and consecutive series of robotic total knee arthroplasties for safety in regard to avoidance of known or delayed soft tissue injuries and the necessity to abort the using the robot to complete the procedure. Report the clinical outcomes with robotic total knee replacement at or beyond two years to demonstrate no delayed effect on expected outcome. Methods. The initial consecutive series of 65 Triathlon. TM. total knee replacements using a semi-active haptic guided system that were performed after commercialization that would be eligible for two year follow-up were reviewed. Pre-operative planning utilizing CT determined the implant placement and boundaries and thus the limit of excursion from any part of the end effector saw tip. Self-retaining retractors were also utilized. Operative reports, 2, 6, and 12 week, and yearly follow-up visit reports were reviewed for any evidence of inadvertent injury to the medial collateral ligament, patellar tendon, or a neurovascular structure from the cutting tool. Operative notes were also reviewed to determine if the robotic procedure was partially or completely aborted due to any issue. Knee Society Knee Scores (KS-KS) and Functional Scores (KS-FS) were recorded from pre-operative and yearly. Any complications were recorded. Results. 40 cases had two year follow-up. The average follow-up for this series was 1.51 years. No cases were unable to be completed robotically. No case had evidence for acute or delayed injury to the medial collateral ligament, patellar tendon, or neurovascular structure. The only complication was a revision total knee for
Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (81 males, 87 females; average age of 66 years) performed from 1995 to 2009 with a minimum of 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (range: 2 months to 262 months). The four most common reasons for failure of the UKA were femoral or
Background. To evaluate the causes and modes of complications after unicompartmental knee arthroplasty (UKA), and to identify its prevention and treatment method by analyzing the complications after UKA. Materials and Methods. A total of 1,576 UKAs were performed between January 2002 and December 2014 at a single-institution. Postoperative complications occurred in 89 knees (83 patients, 5.6%), and 86 of them were found in females and 3 in males. Their mean age was 61 years (range, 46 to 81 years) at the time of initial UKA and 66 years (range, 46 to 82 years) at the time of revision surgery. We analyzed the complications after UKA retrospectively andinvestigated the proper methods of treatment (Table 1). Results. A total of 89 complications (5.6%) occurred afterUKA. Regarding the type of complications after UKA, there were bearing dislocation (n=42), component loosening (n=23), 11 cases of femoral component loosening, 8 cases of
Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (81 males, 87 females; average age of 66 years) performed from 1995 to 2009 with a minimum of 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (range 2 months to 262 months). The four most common reasons for failure of the UKA were femoral or
Loosening is generally the most common reason for revision TKA. In the AOA NJR, the rate of revision varies depending on fixation. Cemented fixation has a lower rate of revision than cementless fixation; 6.7% vs. 8.2% at 14 years. Loosening does occur more frequently in younger patients and in males.
Introduction. Cementless Total Knee Replacement (TKR) was introduced to improve the longevity of implant; but has yet to be widely adopted because of reports of higher earlier failures in some series. The cementless TKR design has evolved recently and we have been using cementless component – both femoral and tibial on our patients. The long follow-up for fully TKR has been scarce in the literature. The purpose of this study isto investigate the minimum of ten years clinical and radiographic result of cementless titanium component and cementless tantalum component in primary TKR. Material & method. From 2008 to 2010 317 TKR underwent primary total knee with cementless femoral component titanium based (Zimmer Nexgen) and cementless tantalum component monoblock tibial component, The surgery was performed mainly on younger patients - average age was 48 yrs old ranging from 26 yrs old to 62 yrs old. All surgeries were performed by single surgeon. All patients were followed clinically and radiographically for a minimum of 8 yrs. Mean 7.8 years and range from 7 to 9 years. The underlying diagnosis for majority of the cases were degenerative arthritis in 97 of the cases and rheumatoid arthritis on the 3%. Result. We have revised 6 cases − 3 cases were for sepsis. They were revised in 2 stages. And we also revised 5 cases for loosening of femoral component. The tibial component revision for aseptic loosening or osteolysis for an end point for survivorship was a 100% for the tibia monoblock design. There was no radiographic evidence of
Introduction. The precise indications for tibial component metal backing and modularity remain controversial in routine primary total knee arthroplasty. This is particularly true in elderly patients where the perceived benefits of metal backing such as load redistribution and the reduction of polyethylene strain may be clinically less relevant. The cost implications for choosing a metal-backed design over an all-polyethylene design may exceed USD500 per primary knee arthroplasty case. Methods. A prospective randomised clinical trial was carried out at the QEII Health Sciences Centre, Halifax, Nova Scotia, to compare modular metal-backed versus an all-polyethylene tibial component. Outcome measures included clinical range of motion, radiographs, survivorship, Knee Society Clinical Rating System, WOMAC and SF-12. Results. 116 patients requesting primary knee arthroplasty were recruited and randomised between the Smith & Nephew Genesis I non-modular (57) and modular (59) tibial designs between September 1995 and August 1997. At 10 years clinical follow-up, 4 implant revisions or intention-to-revise decisions were recorded in the metal-tray/modular group of which 2 were for aseptic
Introduction. Unicompartmental knee arthroplasty (UKA) is a successful procedure for medial compartment osteoarthritis (OA). Recent studies using the same implant report a revision rate of 2.9%. Other centers have reported revision rates as high as 10.3%. The purpose of this study was to retrospectively review the clinical results of Oxford Phase 3 UKA's performed in the setting of isolated medial compartment OA and to compare our results to the previous mid-term studies. Our secondary goal was to determine reasons for revision and evaluate selected independent predictors of failure. Methods. A retrospective review of 465 Oxford Phase 3 medial UKA's performed on 386 patients (222 female; 164 male) with isolated medial compartment OA. The average age at surgery was 69.5 years (40–88). Outcome measures included: Knee Society Scores(KSS), Oxford Knee Scores(OKS), SF-12, WOMAC, revision rates, and patient satisfaction. We evaluated independently predictors of failure including: gender, body mass index(BMI), number of previous surgeries, implant sizes, cement technique (simultaneous vs staged), cement type. Revision rates based upon the polyethylene thickness (defined as thin 3–4 mm; medium 5–6 mm; thick 7–9 mm). The need for stems and augments and the degree of constraint required at revision to a total knee arthroplasty (TKA) were evaluated. Results. At a mean follow-up of 60.7 months (11–114) OKS improved from 21 to 37 points (p<.05). Latest SF-12 score was 43.8 points (16.8–64.7 points; SD, 10.5) and WOMAC was 80 points (23–100 points; SD, 18). The overall revision rate was 6.9% (32/465 knees). Mean time to revision in 25 knees was 34.5 months (7–96), and revision was most commonly performed for lateral compartment OA (10). Eight knees were revised for
Loosening is generally the most common reason for revision TKA. In the AOA NJR, the rate of revision varies depending on fixation. Cemented fixation has a lower rate of revision than cementless fixation; 6.7% vs. 8.2% at 14 years. Loosening does occur more frequently in younger patients and in males.
Purpose. We may consider total knee arthroplasty on one knee and unicompartmental knee arthroplasty on another knee when the patient has different grade osteoarthritis on one knee and opposite knee. Both total knee and unicompartmental knee arthroplasty had been reported as excellent clinical results, but there can be different results and different preference if the same patient undergo operation of simulataneous total knee and unicompartmental knee. We performed total and unicompartmental knee arthroplasty and pretend to report results of the clinical and radiological results and rationale of the operation. Materials and Methods. From Marth 2007 to February 2014, 23 patients, 46 knees that underwent total knee arthroplasty and unicompartmental knee arthroplasty on knees with different osteoarthritis grade in same person enrolled in this study(Fig. 1). The mean age was 64.4 years old(range:55–75) and mean follow-up period was 25.1 months(range:13–72). Results. The tibiofemoral angle changed from 4.0 of varus to 5.4 of valgus in the total knee arthroplasty, and from 0.5 of valgus to 3.8 of valgus in the unicompartmental knee arthroplasty. The mechanical axis deviation changed from varus 28.35mm to varus 3.68mm in the total knee arthroplasty, and from 16.42 to 8.81 in the unicompartmental knee arthroplasty. The average Hospital for Special Surgery Knee-Rating Scale(HSS) improved from 55.1 preoperatively to 93.4 at last follow-up in the total knee arthroplasty, and from 65.2 to 95.2 in the unicompartmental knee arthroplasty. The average WOMAC Score improved from 61.6 preoperatively to 18.0 at last follow-up in the total knee arthroplasty, and from 55.4 to 16.2 in the unicompartmental knee arthroplasty. For patient preference, 5 patients(22%) preferred the unicompartmental knee arthroplasty, and 6 patients(26%) preferred the total knee arthroplasty, and 12 patients felt no difference between two knees. 20 patients(87%) reported being ‘very satisfied’ or ‘satisfied’ in the total knee arthroplasty, and 18 patients(79%) reported in the unicompartmental knee arthroplasty. We underwent 1 case complication of
Introduction. High BMI has been classically regarded as a contraindication for unicompartmental knee arthroplasty (UKA) as it can potentially lead to poor clinical outcomes and a higher risk of failure. In recent years, UKA has increased in popularity and, as a result, patient selection criteria are beginning to broaden. However, UKA performed manually continues to be technically challenging and surgical technique errors may result in suboptimal implant positioning. UKA performed with robotic assistance has been shown to improve component positioning, overall limb alignment, and ligament balancing, resulting in overall improved clinical outcomes. The purpose of this study is to examine the effect of high BMI in patients receiving UKA with robotic assistance. Methods. 1007 patients (1135 knees) were identified in an initial and consecutive multi-surgeon multi-center series receiving robotically assisted medial UKA, with a fixed bearing metal backed onlay tibial component. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and satisfaction. 160 patients were lost to follow up, 35 patients declined to participate, and 15 patients were deceased. 797 patients (909 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 80%. 45% of the patients were female. The average age at time of surgery was 69.0 ± 9.5 (range: 39–93). BMI data was available for 887 knees; the average BMI at time of surgery was 29.4 ± 4.9. Patients were stratified in to five categories based on their BMI: normal (< 25; 16%), overweight (25–30; 46%), obese class I (30–35; 25%), obese class II (35–40; 11%) and obese class III (>40; 2%). Results. Across all BMI groups, nine knees were reported as revised at two years post-operative yielding a two year revision rate of 0.99%, 4 in the overweight group, 2 in the obese class I group and 3 in the obese class II group. There was no significant difference in the rate of revision between the BMI groups (c. 2. (4, N = 887) = 6.04, p = 0.20). Of the 3 revisions for
Background. Navigation systems that increase alignment accuracies of the lower limbs have been applied widely in total knee arthroplasty and are currently being adopted for minimally invasive UKA (MIS UKA) with good alignment results. There is little debate that when compared with total knee arthroplasty (TKA), UKA is less invasive, causes less morbidity, better reproduces kinematics, and therefore offers quicker recovery, better range of movement and more physiologic function. However, despite improved alignment accuracies, advantages of use of navigation system in UKA in clinical outcomes and survivals are still debatable. To the best of our knowledge, no reports are available on the long-term results after UKA performing using a navigation system. The purpose of this prospective study was to compare the radiological, clinical, and survival outcomes of UKA that performed using the navigation system and using the conventional technique at average 8 years follows up. Methods. Between January 2003 and December 2005, Total of 98 UKAs were enrolled for this study, 56 UKAs in the navigation group and 42 UKAs in conventional group were included in this study after a average 8 years follow-up. At the final follow up, the radiological measurements with regard to the mechanical axis, the inclination of the femoral and tibial components, and radiolucent line or loosening were evaluated and compared between two groups. The clinical evaluations were performed using range of motion, Western Ontario and McMaster Arthritis index (WOMAC) scores and Knee Society (KS) score. Results. Of the 98 patients (98 UNI knees), 2 (2.0%) had died at a mean 5.8years after surgery because of cardiovascular disease, 3 (3.1%) underwent revision surgery that 1 cases of periprosthetic stress fractures in medial tibial plateaus in the navigation group and a case of
There is a report that higher failure rate in uncemented total knee replacement components due to loosening. However, uncemented fixation has been an attractive concept because of bone preservation and revision surgery, potential improved load transfer, and decreased surgical time. “Regenerex” is a porous titanium layer with excellent initial fixation, and the promise of providing favourable biological fixation. This is used with the Biomet Vanguard total knee replacement. 14 patients had undergone total knee replacement surgery comprising 11 men and three women with an average age of 63.07 years, and a body mass index of 30.33. Three of these patients required revision, because of