Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 95 - 95
10 Feb 2023
Mowbray J Frampton C Maxwell R Hooper G
Full Access

Cementless fixation is an alternative to cemented unicompartmental knee replacement (UKR), with several advantages over cementation. This study reports on the 15-year survival and 10-year clinical outcomes of the cementless Oxford unicompartmental knee replacement (OUKR). This prospective study describes the clinical outcomes and survival of first 693 consecutive cementless medial OUKRs implanted in New Zealand. The sixteen-year survival was 89.2%, with forty-six knees being revised. The commonest reason for revision was progression of arthritis, which occurred in twenty-three knees, followed by primary dislocation of the bearing, which occurred in nine knees. There were two bearing dislocations secondary to trauma and a ruptured ACL, and two tibial plateau fractures. There were four revisions for polyethylene wear. There were four revisions for aseptic tibial loosening, and one revision for impingement secondary to overhang of the tibial component. There was only one revision for deep infection and one revision where the indication was not stated. The mean OKS improved from 23.3 (7.4 SD) to 40.59 (SD 6.8) at a mean follow-up of sixteen years. In conclusion, the cementless OUKR is a safe and reproducible procedure with excellent sixteen-year survival and clinical outcomes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 10 - 10
10 May 2024
Penumarthy R Jennings A
Full Access

Background. Obesity has been linked with increased rates of knee osteoarthritis. Limited information is available on the survival and functional outcome results of rTKR in the obese patients. This registry-based study aimed to identify whether BMI is an independent risk factor for poorer functional outcomes and /or implant survival in rTKA. Methods. New Zealand Joint Registry (NZJR) data of patients who underwent rTKA from 1st January 2010 to January 2023 was performed. Demographics, American Society of Anesthesiologists (ASA), BMI, Operative time, indications for revision and components revised of the patients undergoing rTKA was collected. Oxford knee score (OKS) at 6 months and rates of second revision (re- revision) were stratified based on standardised BMI categories. Results. Of the 2687 revisions, functional outcome scores were available for 1261 patients. Oxford knee scores following rTKA are significantly inferior in higher BMI patients (36.5 vs 31.5 p<0.001). This held true when adjusted for age (35.7 vs 30.9 p<0.001). Tibial component loosening was a more common indication for revision in patients with BMI >40 (31.1% vs 21% for BMI <25), whereas periprosthetic femoral fracture was significantly more commonly seen in patients with BMI <25. Re-revision rates displayed no significant differences between any pairs of BMI groups (2.18/100 component years) and adjusting for age and sex did not alter this (p= 0.462). Indications for re-revision were also not different between BMI categories. Over 50% of the rTKA patients were obese. Significantly more obese patients were ASA grade 3,4 and more were <75 years. Operative time was longer in the obese patients (p<0.001). Conclusions. Although overall re-revision rates are similar between all BMI categories, the functional outcomes favour those with lower BMI. Patients with higher BMI are younger, more comorbid and carry potentially higher perioperative risks. The registry data provides valuable information when providing counsel to patients undergoing rTKA and lends further support to optimising patients prior to pTKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLII | Pages 10 - 10
1 Sep 2012
Hall MJ Connell DA Morris HG
Full Access

We report long-term results of the first non-designer study of the HA coated Unix UKR. 85 consecutive UKR's were carried out between 1998 and 2002 using the Unix cementless HA coated UKR. 7 were lost to follow up, 6 were deceased and 6 had undergone revision. The remainder had a mean follow-up of 10 years (range 8–13). Oxford Knee Scores, WOMAC questionnaire and radiological assessment were carried out. Average age at surgery was 65 years. The mean Oxford Knee Score was 38.56 (13–48) with 67% scoring over 40, the mean WOMAC Score was 20.16 (0–72) with 58% scoring under 15. Survivorship analysis showed a survival rate of 95% with aseptic loosening as the end-point. Radiographic assessment was carried out by the senior author and an independent radiologist and showed lysis around the tibial base plate in 6% of patients with no lysis evident around the central fin region. The Unix UKR has the unique design of a central horizontal fin inserting under the tibial spine. The survivorship results from this study confirm those of Epinette's showing 100% survivorship at 13 years. Australian Joint Registry data shows high revision rates for UKR's mainly due to tibial loosening. Approximately 70% of the force is transmitted through the medial compartment and recreating this in a UKR results in large forces in the antero-medial proximal tibia. Simpson et al found that with either a central fin or HA coating on the lateral wall, the strain levels in the proximal tibia fell by approximately 66%. We feel that the central fin design is key to dissipating large forces throughout the proximal tibia, resulting in low levels of tibial loosening reported in both the Unix UKR series to date


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 45 - 45
1 May 2019
Berend K
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion preoperatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 modular fixed-bearing, 4 metal-backed nonmodular fixed-bearing, 8 resurfacing onlay, 10 all-polyethylene step-cut, and 19 mobile bearing designs; 5 knees failed due to infection, 5 due to wear and/or instability, 10 for pain or progression of arthritis, 8 for tibial fracture or severe subsidence, and 22 due to loosening of either one or both components. Insert thickness was no different between implants or failure modes. Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (average age: 66 years) performed from 1995 to 2009 with a minimum 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (2–262). The four most common reasons for failure were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (6–123). The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5% at an average of 75 months. In a current study from our center, 184 patients (193 UKA) underwent revision procedures (1996–2015) with minimum 2-year follow-up. Mean age was 63.5 (37–84) years, body mass index was 32.3 (19–57) kg/m. 2. , and interval after UKA was 4.8 (0–35) years. Most prevalent indications for revision were aseptic loosening (42%), arthritic progression (20%) and tibial collapse (14%). At 6.1 years mean follow-up (2–20), 8 knees (4.1%) have required re-revision involving any part, which is similar to what we recently reported at 5.5 years in a group of patients who underwent primary TKA (6 of 189; 3.2%), and much lower than what we observed at 6.0 years in a recent report of patients who underwent aseptic revision TKA (35 of 278; 12.6%). In the study group, Knee Society clinical and function scores improved from 50.8 and 52.1 preoperatively to 83.4 and 67.6 at most recent evaluation, respectively. Re-revisions were for aseptic loosening (3), instability (2), arthrofibrosis (2), and infection (1). Compared to published individual institution and national registry data, re-revision rates of failed UKA are equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 4 - 4
1 Dec 2013
Andriacchi T
Full Access

Answering the question of what the patient can teach us about the future of joint replacement starts with a look to the past. The modern era of total joint replacement began in the late 1950's with the pioneering work of John Charnley that established the fundamental structure of a total joint replacement with a metal component bearing against polyethylene and provided many disabled patients with a substantial improvement in function. As the application of joint replacement expanded to a broader patient population it became apparent that a better understanding of the mechanics of patient function was needed to provide more rigorous design criteria and objective assessment of design changes. This presentation will examine how improvements in total knee replacement has been aided by objective measures of ambulatory function and the potential for future improvements in joint replacement that can be based on information from testing patients. Specifically, from a historical viewpoint one of the major problems limiting the use of total knee replacement in the 1970's was tibial component loosening. The problem of tibial component loosening could be related to the load imbalance between the medial and lateral surface of the tibia. The load asymmetry at the knee resulting from the adduction moment during gait provided a strong rationale for maintaining proper limb alignment following total knee arthroplasty. The analysis clearly showed that knees with a varus alignment of the mechanical axis were more likely to have a substantial load imbalance creating the type of stresses that would eventually lead to tibial component loosening. When the information from gait studies was combined with both clinical and biomechanical studies, tibial component designs were modified using metal backing of the polyethylene articulating surface and instrumentation was modified to allow for proper alignment of the mechanical axis and avoid residual varus deformity following total knee replacement. Similarly, knee kinematics and moments have been used to differentiate the functional characteristics of different types of designs during stair climbing. Patients with cruciate-sacrificing knee replacements had a tendency to reduce the moment sustained by the quadriceps by leaning forward during the portion of the support phase of ascending stairs when the quadriceps moment would reach a peak value, while patients with a posterior cruciate retaining design were able to sustain normal quadriceps function. The functional differences between the PCL-retaining and sacrificing designs were associated with the normal posterior movement of the femur on the tibia (rollback), with flexion. This finding indicated that TKR design must permit rollback in the early phases of knee flexion to sustain normal stair climbing. This presentation will conclude with a review of the functional performance of patients with an anterior cruciate deficient knee as a basis for addressing the future needs of a knee replacement to permit natural knee movement. Specifically the role of the anterior cruciate ligament will be discussed in the context of the interaction of the curvature of the articulating surfaces in maintaining a functional envelope of movement that is consistent with retaining both cruciate ligaments


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 31 - 31
1 Feb 2017
Barnes L
Full Access

Introduction. With the introduction of minimally invasive surgery techniques and improved polyethylene wear properties, there has been a renewed interest in Unicondylar Knee Replacements (UKR). Customized, Individually Made (CIM) UKR have been in the market for some time, and have shown to provide improved coverage and fit. The purpose of this study was to assess clinical and patient-reported outcomes utilizing CIM-UKR prostheses. Methods. A prospectively recruited cohort of 118 patients was implanted with 120 CIM-UKR (110 medial/10 lateral) at multiple centers across the US. Patients were diagnosed with uni-compartmental osteoarthritis of the medial or lateral compartment. Patients with compromised cruciate or collateral ligaments or having a varus/valgus deformity <15. °. were excluded. Patients were assessed for Knee Society Knee and Function Scores, WOMAC & ROM pre-operatively (120 patients), at 6-weeks post-op (119), 6-months post-op (71 optional visit), 1 year post-op (113) and 2 years post-operatively (96). For the 3 and 4 year post-operative time points, patients were contacted to report on any possible adverse events. Results. Range-of-motion was improved from 120. °. pre-operatively to 131. °. at 2 years post-op. Patients demonstrated marked improvements from baseline scores across all domains. All patients have passed their 2-year follow up visit to date. Average KSS Knee Scores significantly improved from their preoperative levels to 95 at the 2-years follow-up visit. KSS Function domain scores significantly improved from pre-operative levels to 91 at the 2 year time-point. Similar improvements were noted in the WOMAC score, which was reported to be 89 at the 2 year time point. Average VAS Pain scores at the 2 year visit was 1.3. To date, at an average follow-up of 3.1 years there have been 2 patients revised for tibial loosening and an additional 2 patients have been revised for disease progression in the other compartments of the knee. Discussion. There are a multitude of studies of off-the-shelf mobile and fixed-bearing UKR. The 2-year follow up data collected on CIM-UKR compares favorably to both published scores as well as revision rates for off-the-shelf implants


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2020
Gustke K
Full Access

Background. Use of a robotic tool to perform surgery introduces a risk of unexpected soft tissue damage due to the uncommon tactile feedback for the surgeon. Early experience with robotics in total hip and knee replacement surgery reported having to abort the procedure in 18–34 percent of cases due to inability to complete preoperative planning, hardware and soft tissue issues, registration issues, as well as concerns over actual and potential soft tissue damage. These can result in significant morbidity to the patient, negating all the desired advantages of precision and reproducibility with robotic assisted surgery. The risk of soft tissue damage can be mitigated by haptic software prohibiting the cutting tip from striking vital soft tissues and by the surgeon making sure there is a clear workspace path for the cutting tool. This robotic total knee system with a semi-active haptic guided technique was approved by the FDA on 8/5/2015 and commercialized in August of 2016. Two year clinical results have not been reported to date. Objective. To review an initial and consecutive series of robotic total knee arthroplasties for safety in regard to avoidance of known or delayed soft tissue injuries and the necessity to abort the using the robot to complete the procedure. Report the clinical outcomes with robotic total knee replacement at or beyond two years to demonstrate no delayed effect on expected outcome. Methods. The initial consecutive series of 65 Triathlon. TM. total knee replacements using a semi-active haptic guided system that were performed after commercialization that would be eligible for two year follow-up were reviewed. Pre-operative planning utilizing CT determined the implant placement and boundaries and thus the limit of excursion from any part of the end effector saw tip. Self-retaining retractors were also utilized. Operative reports, 2, 6, and 12 week, and yearly follow-up visit reports were reviewed for any evidence of inadvertent injury to the medial collateral ligament, patellar tendon, or a neurovascular structure from the cutting tool. Operative notes were also reviewed to determine if the robotic procedure was partially or completely aborted due to any issue. Knee Society Knee Scores (KS-KS) and Functional Scores (KS-FS) were recorded from pre-operative and yearly. Any complications were recorded. Results. 40 cases had two year follow-up. The average follow-up for this series was 1.51 years. No cases were unable to be completed robotically. No case had evidence for acute or delayed injury to the medial collateral ligament, patellar tendon, or neurovascular structure. The only complication was a revision total knee for tibial component loosening after a fall induced periprosthetic tibial fracture. Average pre-operative KS-KS and KS-FS improved from 46.9 and 52.1 to 99.2 and 88.6 at one year follow-up, 100.5 and 86.9 at two year follow-up. Conclusions. A semi-active haptic guided robotic system is a safe and reliable method to perform total knee replacement surgery. This series of initial robotic arm assisted surgery had no intraoperative or delayed soft tissue injuries. Preliminary short-term outcomes at up to two years show excellent outcomes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 63 - 63
1 Aug 2017
Lombardi A
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (81 males, 87 females; average age of 66 years) performed from 1995 to 2009 with a minimum of 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (range: 2 months to 262 months). The four most common reasons for failure of the UKA were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (range 6 months to 123 months.) The rate of revision was 1.23 revisions per 100 observed component years. The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5 % at an average of 75 months or 1.2 revisions per 100 observed component years. In a current study from our center, 174 patients (180 UKA) underwent revision procedures (1996–2017). Most prevalent indications for revision were aseptic loosening (45%) arthritic progression (17%) and tibial collapse (13%). At 4 years mean follow-up, 5 knees (2.8%) have required re-revision involving any part, which is similar to what we recently reported at 5.5 years in a group of patients who underwent primary TKA (6 of 189; 3.2%), and much lower than what we observed at 6.0 years in a recent report of patients who underwent aseptic revision TKA (35 of 278; 12.6%). Compared to published individual institution and national registry data, re-revision of a failed UKA is equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 69 - 69
1 Feb 2017
Kim K Lee S
Full Access

Background. To evaluate the causes and modes of complications after unicompartmental knee arthroplasty (UKA), and to identify its prevention and treatment method by analyzing the complications after UKA. Materials and Methods. A total of 1,576 UKAs were performed between January 2002 and December 2014 at a single-institution. Postoperative complications occurred in 89 knees (83 patients, 5.6%), and 86 of them were found in females and 3 in males. Their mean age was 61 years (range, 46 to 81 years) at the time of initial UKA and 66 years (range, 46 to 82 years) at the time of revision surgery. We analyzed the complications after UKA retrospectively andinvestigated the proper methods of treatment (Table 1). Results. A total of 89 complications (5.6%) occurred afterUKA. Regarding the type of complications after UKA, there were bearing dislocation (n=42), component loosening (n=23), 11 cases of femoral component loosening, 8 cases of tibial component loosening, and 4 cases of both femoral and tibial component loosening, periprosthetic fracture (n=6), polyethylene wear/ destruction (n=3), progression of arthritis to the other compartment (n=3), medial collateral ligament (MCL) injury (n=2), impingement (n=2), infection (n=5), ankylosis (n=1), and unexplained pain (n=2) (Table 2). The most common complication after UKA was mobile bearing dislocation in mobile-bearing type and loosening of prosthesis in fixed-bearing type, but polyethylene wear and progression of arthritis were relatively rare. The mean interval from UKA to the occurrence of complications was 4 years and 6 months (range, 0 [during operation] to 12 years). Of those complications following UKA, 58 knees were treated with conversion TKA, 1 with revision UKA, and 21 with simple bearing change. Complications in the remaining knees were treated with arthroscopic management (n=2), open reduction and internal fixation (n=3), closed reduction and internal fixation (n=1), manipulation (n=1), and MCL repair (n=2) (Table 3). Discussion. In this single-center study, we reviewed the causes and types of complications (n=89) that occurred following UKA (n=1,576) and investigated optimal treatment methods. The incidence and type of complications were also compared among patients classified according to gender, medial/lateral UKA, and implant design and type. The strengths of this study include that all the patients were enrolled from the same institution and the sample size (UKA cases and complication cases) was relatively large compared to that in previous publications. The most common complication following UKA was bearing dislocation in the mobile-bearing knees and component loosening in the fixed-bearing knees. The incidence of polyethylene wear and progression of arthritis to the other compartment was relatively low. The results of our study are in some discrepancy with those of studies involving Western patients. This can be attributed to the differences in patient characteristics such as lifestyle and in the type and design of implant used. Conclusion. Thorough understanding of UKA, proper patient selection, appropriate implant choice are essential to reduce complications following UKA and obtain satisfactory outcomes. We suggest that complications following UKA should be treated differently according to the type and cause of complication and conversion TKA can be the most effective treatment when revision operation is determined necessary


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 68 - 68
1 Nov 2016
Lombardi A
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (81 males, 87 females; average age of 66 years) performed from 1995 to 2009 with a minimum of 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (range 2 months to 262 months). The four most common reasons for failure of the UKA were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (range 6 months to 123 months). The rate of revision was 1.23 revisions per 100 observed component years. The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5% at an average of 75 months or 1.2 revisions per 100 observed component years. Compared to published individual institution and national registry data, re-revision of a failed UKA is equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 107 - 107
1 Jun 2018
Schmalzried T
Full Access

Loosening is generally the most common reason for revision TKA. In the AOA NJR, the rate of revision varies depending on fixation. Cemented fixation has a lower rate of revision than cementless fixation; 6.7% vs. 8.2% at 14 years. Loosening does occur more frequently in younger patients and in males. Tibial component loosening is the most common. There is an opportunity for improvement. More durable fixation can be achieved through improved cement technique, rather than going cementless. De-bonding of the tibial baseplate from the cement is the mechanism of failure in up to 2.9% of total knee arthroplasties. Among seven surgeons at one center, there was a 6.4 fold range (0.7%-4.5%) in the occurrence of such loosening with the same prosthesis. This surgeon-related variability in tibial component de-bonding indicates that surgical technique influences loosening. In a laboratory study, earlier application of cement to metal increases bond strength (p<0.01) while later application reduces bond strength (p<0.05). Fat contamination of the tibial tray-cement interface reduces bond strength, but application of cement to the underside of the tibial tray prior to insertion substantially mitigates this (p<0.05)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 95 - 95
1 Apr 2019
Osman A Tarabichi S Haidar F
Full Access

Introduction. Cementless Total Knee Replacement (TKR) was introduced to improve the longevity of implant; but has yet to be widely adopted because of reports of higher earlier failures in some series. The cementless TKR design has evolved recently and we have been using cementless component – both femoral and tibial on our patients. The long follow-up for fully TKR has been scarce in the literature. The purpose of this study isto investigate the minimum of ten years clinical and radiographic result of cementless titanium component and cementless tantalum component in primary TKR. Material & method. From 2008 to 2010 317 TKR underwent primary total knee with cementless femoral component titanium based (Zimmer Nexgen) and cementless tantalum component monoblock tibial component, The surgery was performed mainly on younger patients - average age was 48 yrs old ranging from 26 yrs old to 62 yrs old. All surgeries were performed by single surgeon. All patients were followed clinically and radiographically for a minimum of 8 yrs. Mean 7.8 years and range from 7 to 9 years. The underlying diagnosis for majority of the cases were degenerative arthritis in 97 of the cases and rheumatoid arthritis on the 3%. Result. We have revised 6 cases − 3 cases were for sepsis. They were revised in 2 stages. And we also revised 5 cases for loosening of femoral component. The tibial component revision for aseptic loosening or osteolysis for an end point for survivorship was a 100% for the tibia monoblock design. There was no radiographic evidence of tibial component loosening or subsidence, or migration at the time of the latest follow-up for tibia monoblock. On the femoral part we documented 16 cases other than those 4 revision for osteolysis, where limited osteolysis happened in some area of the tibial component but it did not affect stability and those has been followed up for a longer term. There was interesting phenomena in some of those cases where bone growth happened around the anterior cortex where it sealed the component entirely. Knee society scores improved from 51 pre-operatively to 94 pre-operatively on the last clinical visit. We had 32 cases where the patientswere able to regain their full mobility flexion of over 150 degrees. Conclusion. Our data clearly shows that the cementless TKR has excellent result as compared to the cemented with a good survival ship at 10 years. The tantalum tibial component shows an excellent survivorship. The femoral component also present reasonably good result but we still faced a few cases of loosening. The functional outcome for the implant with the surgery was satisfactory. With this result we strongly recommend using the cementless implant in young patients. We believe that cementless tibial is totally safe at this point as well as the femoral cementless prosthesis. However, we expect some improvement with the outcome with the femoral component when using the tantalum


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 127 - 127
1 May 2012
R. P R. L D. P K. T G. D A. H
Full Access

Introduction. The precise indications for tibial component metal backing and modularity remain controversial in routine primary total knee arthroplasty. This is particularly true in elderly patients where the perceived benefits of metal backing such as load redistribution and the reduction of polyethylene strain may be clinically less relevant. The cost implications for choosing a metal-backed design over an all-polyethylene design may exceed USD500 per primary knee arthroplasty case. Methods. A prospective randomised clinical trial was carried out at the QEII Health Sciences Centre, Halifax, Nova Scotia, to compare modular metal-backed versus an all-polyethylene tibial component. Outcome measures included clinical range of motion, radiographs, survivorship, Knee Society Clinical Rating System, WOMAC and SF-12. Results. 116 patients requesting primary knee arthroplasty were recruited and randomised between the Smith & Nephew Genesis I non-modular (57) and modular (59) tibial designs between September 1995 and August 1997. At 10 years clinical follow-up, 4 implant revisions or intention-to-revise decisions were recorded in the metal-tray/modular group of which 2 were for aseptic tibial component loosening. 2 implant revisions in the all-polyethylene non-modular group were recorded, neither of which were for tibial component loosening. At 5, 7 and 10 year review; the KSCRS, WOMAC and SF12 scores were similar in both groups. As most patients randomised were over seventy years of age, this impacted significantly on the numbers available for longer term review and data was analysed by comparing pre- and post-operative scores for individual patients. Conclusion. There was no difference in performance between the all-polyethylene tibial component and the metal-backed tibial component. The case for using the all-polyethylene tibia in elderly patients is justified on both clinical efficacy and cost-containment grounds


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 27 - 27
1 Mar 2013
Burnett S Nair R Jacks D Hall C
Full Access

Introduction. Unicompartmental knee arthroplasty (UKA) is a successful procedure for medial compartment osteoarthritis (OA). Recent studies using the same implant report a revision rate of 2.9%. Other centers have reported revision rates as high as 10.3%. The purpose of this study was to retrospectively review the clinical results of Oxford Phase 3 UKA's performed in the setting of isolated medial compartment OA and to compare our results to the previous mid-term studies. Our secondary goal was to determine reasons for revision and evaluate selected independent predictors of failure. Methods. A retrospective review of 465 Oxford Phase 3 medial UKA's performed on 386 patients (222 female; 164 male) with isolated medial compartment OA. The average age at surgery was 69.5 years (40–88). Outcome measures included: Knee Society Scores(KSS), Oxford Knee Scores(OKS), SF-12, WOMAC, revision rates, and patient satisfaction. We evaluated independently predictors of failure including: gender, body mass index(BMI), number of previous surgeries, implant sizes, cement technique (simultaneous vs staged), cement type. Revision rates based upon the polyethylene thickness (defined as thin 3–4 mm; medium 5–6 mm; thick 7–9 mm). The need for stems and augments and the degree of constraint required at revision to a total knee arthroplasty (TKA) were evaluated. Results. At a mean follow-up of 60.7 months (11–114) OKS improved from 21 to 37 points (p<.05). Latest SF-12 score was 43.8 points (16.8–64.7 points; SD, 10.5) and WOMAC was 80 points (23–100 points; SD, 18). The overall revision rate was 6.9% (32/465 knees). Mean time to revision in 25 knees was 34.5 months (7–96), and revision was most commonly performed for lateral compartment OA (10). Eight knees were revised for tibial loosening, femoral loosening (6), and PCL failure (1). Revision implants included posterior stabilized in 13 knees (52%), cruciate retaining in 9 knees (36%), and cruciate substituting/dished in 3 knees (12%). Five revisions (20%) required tibial augments and 2(8%) had cemented tibial stems. The mean revision polyethylene thickness was 12 mm (range, 9–19 mm) and one knee required a constrained polyethylene. Three knees are pending revision to TKA. Four knees underwent poly exchange for bearing dislocation and 3 knees had further arthroscopic procedures. Eighty-four percent of the patella were resurfaced at revision. Three quarters (76%) of the patients were extremely or very satisfied with their surgery. Over 90% would have had their surgeries again. Gender, BMI, number of previous surgeries, femoral or tibial sizing, poly thickness, cementing technique or type did not predict revision, the need for constraint, or the need for stems or augments. Conclusion. Our revision rate of 6.9% was comparable to other midterm studies from independent centers but not as low as recently reported results from Oxford. Progression to lateral compartment OA was the most common reason for revision. We could not find any independent predictors of failures in this group of 465 knees


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 26 - 26
1 Nov 2016
Schmalzried T
Full Access

Loosening is generally the most common reason for revision TKA. In the AOA NJR, the rate of revision varies depending on fixation. Cemented fixation has a lower rate of revision than cementless fixation; 6.7% vs. 8.2% at 14 years. Loosening does occur more frequently in younger patients and in males. Tibial component loosening is the most common. There is an opportunity for improvement. More durable fixation can be achieved through improved cement technique. De-bonding of the tibial baseplate from the cement is the mechanism of failure in up to 2.9% of total knee prostheses. Among seven surgeons at one center, there was a 6.4-fold range (0.7%-4.5%) in the occurrence of such loosening with the same prosthesis. This surgeon-related variability in tibial component de-bonding suggests that surgical technique influences loosening rates. In a laboratory study, earlier application of cement to metal increases bond strength (p<0.01) while later application reduces bond strength (p<0.05). Fat contamination of the tibial tray-cement interface reduces bond strength, but application of cement to the underside of the tibial tray prior to insertion substantially mitigates this (p<0.05)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 12 - 12
1 Jan 2016
Song IS Shin SY
Full Access

Purpose. We may consider total knee arthroplasty on one knee and unicompartmental knee arthroplasty on another knee when the patient has different grade osteoarthritis on one knee and opposite knee. Both total knee and unicompartmental knee arthroplasty had been reported as excellent clinical results, but there can be different results and different preference if the same patient undergo operation of simulataneous total knee and unicompartmental knee. We performed total and unicompartmental knee arthroplasty and pretend to report results of the clinical and radiological results and rationale of the operation. Materials and Methods. From Marth 2007 to February 2014, 23 patients, 46 knees that underwent total knee arthroplasty and unicompartmental knee arthroplasty on knees with different osteoarthritis grade in same person enrolled in this study(Fig. 1). The mean age was 64.4 years old(range:55–75) and mean follow-up period was 25.1 months(range:13–72). Results. The tibiofemoral angle changed from 4.0 of varus to 5.4 of valgus in the total knee arthroplasty, and from 0.5 of valgus to 3.8 of valgus in the unicompartmental knee arthroplasty. The mechanical axis deviation changed from varus 28.35mm to varus 3.68mm in the total knee arthroplasty, and from 16.42 to 8.81 in the unicompartmental knee arthroplasty. The average Hospital for Special Surgery Knee-Rating Scale(HSS) improved from 55.1 preoperatively to 93.4 at last follow-up in the total knee arthroplasty, and from 65.2 to 95.2 in the unicompartmental knee arthroplasty. The average WOMAC Score improved from 61.6 preoperatively to 18.0 at last follow-up in the total knee arthroplasty, and from 55.4 to 16.2 in the unicompartmental knee arthroplasty. For patient preference, 5 patients(22%) preferred the unicompartmental knee arthroplasty, and 6 patients(26%) preferred the total knee arthroplasty, and 12 patients felt no difference between two knees. 20 patients(87%) reported being ‘very satisfied’ or ‘satisfied’ in the total knee arthroplasty, and 18 patients(79%) reported in the unicompartmental knee arthroplasty. We underwent 1 case complication of tibial implant loosening and varus malalignment. So, we converted total knee arthroplasty about 3 months later(Fig. 2). Conclusions. Total knee arthroplasty and unicompartmental knee arthroplasty in same person showed satisfactory clinical and radiological results. There was no difference in preference site and postoperative range of motion showed more regainment on unicompartmental knee arthroplasty. More complications were demonstrated in unicompartmental knee arthroplasty. Total and unicompartmental knee arthroplasty in same person seems to be a good option when the both knee have different osteoarthritis grade


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 28 - 28
1 Dec 2013
Chaudhary M Walker P
Full Access

Tibial component loosening is an important failure mode in unicompartmental knee arthroplasty (UKA) which may be due to the 6–8 mm of bone resection required or the limited surface area. To address component loosening and fixation, a new Early Intervention (EI) design is proposed which reverses the traditional material scheme between femoral and tibial components. That is, the EI design consists of a plastic inlay component for the distal femur and a thin metal plate for the proximal tibia. With this reversed materials scheme, the EI design requires minimal tibial bone resection compared to traditional UKA to preserve the dense and stiff bone in the proximal tibia. This study investigated, by means of finite element (FE) simulations, the potential advantages of a thin metal tibial component compared with traditional UKA tibial components, such as an all-plastic inlay or a metal-backed onlay. We hypothesized that an EI component would produce comparable stress, strain, and strain energy density characteristics to an intact knee and more favorable values than UKA components. Indeed, the finite element results showed that an EI design reduced stresses, strains and strain energy density in the underlying support bone compared to an all-plastic UKA component. Analyzed parameters were similar for an EI and a metal-backed onlay, but the EI component had the advantage of minimal resection of the stiffest bone


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 98 - 98
1 Jan 2016
Conditt M Coon T Roche M Buechel F Borus T Dounchis J Pearle A
Full Access

Introduction. High BMI has been classically regarded as a contraindication for unicompartmental knee arthroplasty (UKA) as it can potentially lead to poor clinical outcomes and a higher risk of failure. In recent years, UKA has increased in popularity and, as a result, patient selection criteria are beginning to broaden. However, UKA performed manually continues to be technically challenging and surgical technique errors may result in suboptimal implant positioning. UKA performed with robotic assistance has been shown to improve component positioning, overall limb alignment, and ligament balancing, resulting in overall improved clinical outcomes. The purpose of this study is to examine the effect of high BMI in patients receiving UKA with robotic assistance. Methods. 1007 patients (1135 knees) were identified in an initial and consecutive multi-surgeon multi-center series receiving robotically assisted medial UKA, with a fixed bearing metal backed onlay tibial component. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and satisfaction. 160 patients were lost to follow up, 35 patients declined to participate, and 15 patients were deceased. 797 patients (909 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 80%. 45% of the patients were female. The average age at time of surgery was 69.0 ± 9.5 (range: 39–93). BMI data was available for 887 knees; the average BMI at time of surgery was 29.4 ± 4.9. Patients were stratified in to five categories based on their BMI: normal (< 25; 16%), overweight (25–30; 46%), obese class I (30–35; 25%), obese class II (35–40; 11%) and obese class III (>40; 2%). Results. Across all BMI groups, nine knees were reported as revised at two years post-operative yielding a two year revision rate of 0.99%, 4 in the overweight group, 2 in the obese class I group and 3 in the obese class II group. There was no significant difference in the rate of revision between the BMI groups (c. 2. (4, N = 887) = 6.04, p = 0.20). Of the 3 revisions for tibial component loosening, one occurred in the overweight group, one in the obese group and one in the morbidly obese group. The overall patient satisfaction rate for the entire population was 92% with the following distribution: normal: 92%, overweight: 93%, obese class I: 92%, obese class II: 87% and obese class III: 83%. While the most severely obese patients tended to be less satisfied, this was not statistically significant between the groups (c. 2. (4, N = 887) = 5.12, p = 0.27). Conclusion. These results suggest that BMI does not effect the survivorship or the satisfaction of patients undergoing robotically assisted UKA. Advancement in UKA implant designs and improvements in surgical technique may help to broaden indications and patient selection for UKA. This study will continue to track patients mid to long term to determine the longer term effect of robotically assisted UKA on high BMI patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 153 - 153
1 Jan 2016
Kim H Seon J Song E Seol J
Full Access

Background. Navigation systems that increase alignment accuracies of the lower limbs have been applied widely in total knee arthroplasty and are currently being adopted for minimally invasive UKA (MIS UKA) with good alignment results. There is little debate that when compared with total knee arthroplasty (TKA), UKA is less invasive, causes less morbidity, better reproduces kinematics, and therefore offers quicker recovery, better range of movement and more physiologic function. However, despite improved alignment accuracies, advantages of use of navigation system in UKA in clinical outcomes and survivals are still debatable. To the best of our knowledge, no reports are available on the long-term results after UKA performing using a navigation system. The purpose of this prospective study was to compare the radiological, clinical, and survival outcomes of UKA that performed using the navigation system and using the conventional technique at average 8 years follows up. Methods. Between January 2003 and December 2005, Total of 98 UKAs were enrolled for this study, 56 UKAs in the navigation group and 42 UKAs in conventional group were included in this study after a average 8 years follow-up. At the final follow up, the radiological measurements with regard to the mechanical axis, the inclination of the femoral and tibial components, and radiolucent line or loosening were evaluated and compared between two groups. The clinical evaluations were performed using range of motion, Western Ontario and McMaster Arthritis index (WOMAC) scores and Knee Society (KS) score. Results. Of the 98 patients (98 UNI knees), 2 (2.0%) had died at a mean 5.8years after surgery because of cardiovascular disease, 3 (3.1%) underwent revision surgery that 1 cases of periprosthetic stress fractures in medial tibial plateaus in the navigation group and a case of tibial component loosening and polyethylene wear in conventional groups were observed. At a final follow up, the mean of mechanical axis was statistically different between two groups (2.7 vs. 3.9 of varus). And there were significant difference between 2 groups in terms of the mean values (p=0.042) for the tibial component coronal alignment, mean coronal alignments of tibial components were 89.1 ± 2.4° in the NA-MIS and 87.6 ± 1.8° in the MIS group, however outlier result were similar in the 2 group (5 and 5 knees, respectively, p=0.673). Sagittal alignments of femoral and tibial component were similar in the two groups (p>0.05) Significant differences were found in WOMAC or HSS knee scores, in which, stiffness did not show any difference between two groups, but pain and function showed difference at the last follow-up. The mean knee flexion has improved from 135.0 ± 14.8° and 135.0 ± 14.1° preoperatively to 137.1 ± 6.5° and 136.5 ± 7.2° in the NA-MIS and MIS groups on the latest follow-up, which was not significants different (p =0.883). Conclusion. The navigation system in UKA can provide improved alignment accuracy. And better clinical outcomes in pain and HSS score compared with conventional technique after a average of 8 year follow-up


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 103 - 103
1 Mar 2013
Kohan L Field C Kerr D
Full Access

There is a report that higher failure rate in uncemented total knee replacement components due to loosening. However, uncemented fixation has been an attractive concept because of bone preservation and revision surgery, potential improved load transfer, and decreased surgical time. “Regenerex” is a porous titanium layer with excellent initial fixation, and the promise of providing favourable biological fixation. This is used with the Biomet Vanguard total knee replacement. 14 patients had undergone total knee replacement surgery comprising 11 men and three women with an average age of 63.07 years, and a body mass index of 30.33. Three of these patients required revision, because of tibial component loosening within 12 months of surgery. There were two men and one woman with an average age of 63.33 and BMI of 34.55. Clinically, patients developed pain and a gradual deformity as a result of a symmetrical collapse of the proximal tibial bony support surface. Histopathology on the removed specimens shows the development of fibre cartilaginous metaplasia with evidence of necrotic bone. This was similar in all patients. There was no foreign body giant cell reaction, and no evidence of infection. The appearance was suggested of osteonecrosis, occurring gradually. The incidence of frequency of this complication with this component in our experience is of concern, and the aim of this presentation is to determine whether this is a more widespread phenomenon