Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 11 - 11
1 Dec 2022
Bergomi A Adriani M De Filippo F Manni F Motta M Saccomanno M Milano G
Full Access

Rotator cuff repair has excellent clinical outcomes but continues to be a challenge when it comes to large and massive tears as well as revision procedures. Reported symptomatic retear rates are still too high to be acceptable. The purpose of the present study was to evaluate the effectiveness of a combination of augmentation techniques consisting of microfractures of the greater tuberosity, extracellular matrix (ECM) patch graft and subsequent platelet concentrate (PC) subacromial injections in revision rotator cuff repair.

The study was designed as a retrospective comparative study on prospectively collected data from a consecutive cohort of patients. All patients who underwent arthroscopic revision rotator cuff repair for symptomatic failure of previous posterosuperior rotator cuff repair were considered eligible for the study. Symptomatic failure had been diagnosed according to clinical examination and confirmed by magnetic resonance imaging (MRI). Structural integrity had been assessed on MRI and classified according to Sugaya classification. Only patients affected by stage IV-V were considered eligible. Tear reparability was confirmed during arthroscopy. Only patients with a minimum 2 years follow-up were included. Patients were divided in two groups. In group 1 (control group) a standard arthroscopic revision and microfractures of the greater tuberosity were performed; in group 2 (experimental group), microfractures of the greater tuberosity and a ECM patch graft were used to enhance tendon repair, followed by postoperative PC injections. Minimum follow-up was 12 months. Primary outcome was the Constant-Murley score (CMS) normalized for age and gender. Subjective outcome was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) score in its short version (Quick-DASH). Tendon integrity was assessed with MRI at 6 months after surgery. Comparison between groups for all discrete variables at baseline and at follow-up was carried out with the Student's t-test for normally distributed data, otherwise Mann-Whitney U-test was used. Within-group differences (baseline vs follow-up) for discrete variables were analyzed by paired t-test, or by Wilcoxon signed-rank test in case of data with non-normal distribution. Differences for categorical variables were assessed by chi-squared test. Significance was considered for p values < 0.05.

Forty patients were included in the study (20 patients for each group). The mean follow-up was 13 ± 1.6 months. No patients were lost at the follow up. Comparison between groups did not show significant differences for baseline characteristics. At follow-up, mean CMS was 80.7 ± 16.6 points in group 1 and 91.5 ± 11.5 points in group 2 (p= 0.022). Mean DASH score was 28.6 ± 21.6 points in group 1 and 20.1 ± 17.4 points in group 2 (p= 0.178). Post-operative MRI showed 6 healed shoulders in Group 1 and 16 healed shoulders in Group 2 (p<0.004). No postoperative complications were reported in both groups.

The combination of microfractures of the greater tuberosity, ECM patch graft, and subsequent PC subacromial injections is an effective strategy in improving tendon healing rate.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 49 - 49
2 Jan 2024
Duquesne K Emmanuel A
Full Access

For many years, marker-based systems have been used for motion analysis. However, the emergence of new technologies, such as 4D scanners provide exciting new opportunities for motion analysis. In 4D scanners, the subjects are measured as a dense mesh, which enables the use of shape analysis techniques. In this talk, we will explore how the combination of the rising new motion analysis methods and shape modelling may change the way we think about movement and its analysis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 107 - 107
1 Nov 2021
Salini V
Full Access

Treatment of large bone defects represents a great challenge for orthopedic surgeons. The main causes are congenital abnormalities, traumas, osteomyelitis and bone resection due to cancer. Each surgical method for bone reconstruction leads its own burden of complications. The gold standard is considered the autologous bone graft, either of cancellous or cortical origin, but due to graft resorption and a limitation for large defect, allograft techniques have been identified. In the bone defect, these include the placement of cadaver bone or cement spacer to create the ‘Biological Chamber’ to restore bone regeneration, according to the Masquelet technique.

We report eight patients, with large bone defect (for various etiologies and with an average size defect of 13.3 cm) in the lower and upper limbs, who underwent surgery at our Traumatology Department, between January 2019 and October 2020. Three patients were treated with both cortical and cancellous autologous bone grafts, while five received cortical or cement spacer allografts from donors. They underwent pre and postoperative radiographs and complete osseointegration was observed in all patients already undergoing monthly radiographic checks, with a restoration of length and range of motion.

In our study, both the two stage-Masquelet and the cortical bone graft from a cadaver donor proved to be valid techniques in patients with very extensive defects to reconstruct the defect, restore the length, minimize implant left in situ and achieve complete functional recovery.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 96 - 96
2 Jan 2024
Bauer C Moser L Otahal A Kern D Dammerer D Zantop T Nehrer S
Full Access

Mincing cartilage with commercially available shavers is increasingly used for treating focal cartilage defects. This study aimed to compare the impact of mincing bovine articular cartilage using different shaver blades on chondrocyte viability.

Bovine articular cartilage was harvested using a scalpel or three different shaver blades (2.5 mm, 3.5 mm, or 4.2 mm) from a commercially available shaver. The cartilage obtained with a scalpel was minced into fragments smaller than 1 mm3. All four conditions were cultivated in a culture medium for seven days. After Day 1 and Day 7, metabolic activity, RNA isolation, and gene expression of anabolic (COL2A1, ACAN) and catabolic genes (MMP1, MMP13), Live/Dead staining and visualization using confocal microscopy, and flow cytometric characterization of minced cartilage chondrocytes were measured.

The study found that mincing cartilage with shavers significantly reduced metabolic activity after one and seven days compared to scalpel mincing (p<0.001). Gene expression of anabolic genes was reduced, while catabolic genes were increased after day 7 in all shaver conditions. The MMP13/COL2A1 ratio was also increased in all shaver conditions. Confocal microscopy revealed a thin line of dead cells at the lesion site with viable cells below for the scalpel mincing and a higher number of dead cells diffusely distributed in the shaver conditions. After seven days, there was a significant decrease in viable cells in the shaver conditions compared to scalpel mincing (p<0.05). Flow cytometric characterization revealed fewer intact cells and proportionally more dead cells in all shaver conditions compared to the scalpel mincing.

Mincing bovine articular cartilage with commercially available shavers reduces the viability of chondrocytes compared to scalpel mincing. This indicates that mincing cartilage with a shaver should be considered a matrix rather than a cell therapy. Further experimental and clinical studies are required to standardize the mincing process with a shaver.

Acknowledgements: This study received unrestricted funding from KARL STORZ SE & Co. KG.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 36 - 36
17 Apr 2023
Davidson D Spratt D Liddle A
Full Access

Prosthetic joint infection (PJI) is an important cause of arthroplasty failure. There is no method to disclose the presence or map the distribution of the in vivo biofilm on infected arthroplasty despite the recognition that such a tool would aid intraoperative decision making and improve novel implant design. The aim of this study was to test the efficacy of four dyes to disclose bacterial biofilm in an in vitro setting.

Four dyes with known affinity to bacterial biofilm were assessed to determine their efficacy to disclose biofilms in an in vitro model of PJI. Three dyes (Methylene Blue, Indocyanine Green and Rose Bengal) have established clinical utility and the other, Thioflavin T, is known to fluoresce in the presence of amyloid a known biofilm constituent. The efficacy of the dyes to discriminate between biofilms of different mass and vitality (high, low or the non-inoculated control) was determined after three minutes exposure of the biofilm to the dyes by calculating the amount of dye bound to the biofilm via sonication and spectrophotometry, quantification of the dye through standardised photographic imaging of the stained biofilm and the calculation of inter-observer agreement. Each experiment was performed in triplicate for each dye and repeated three times.

For each of the disclosure dyes assessed there was significant difference demonstrated between the amount of dye bound to the high and low mass biofilms (p<0.05) as well as in the amount of dye quantified in photographic and fluorescent image assessment between biofilms of differing mass (p<0.01). There was excellent agreement between three observers, for each disclosure dye, in determining the biofilm mass of each stained disc (Kappa>0.91).

This study demonstrates the efficacy of biofilm disclosure dyes in an in vitro PJI model which could one day be used to disclose and map the clinical biofilm in vivo.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 70 - 70
1 Nov 2021
Yener C Aljasim O Demirkoparan M Bilge O Binboğa E Argın M Küçük L Özkayın N
Full Access

Introduction and Objective

Scapholunate instability is the most common cause of carpal instability. When this instability is left untreated, the mechanical relationship between the carpal bones is permanently disrupted, resulting in progressive degenerative changes in the radiocarpal and midcarpal joints. Different tenodesis methods are used in the treatment of acute or early chronic reducible scapholunate instability, where arthritis has not developed yet and the scapholunate ligament cannot be repaired. Although it has been reported that pain is reduced in the early follow up in clinical studies with these methods, radiological results differ between studies. The deterioration of these radiological parameters is associated with wrist osteoarthritis as previously stated. Therefore, more studies are needed to determine the tenodesis method that will improve the wrist biomechanics better and will last longer. In our study, two new tenodesis methods, spiral antipronation tenodesis, and anatomic front and back reconstruction (ANAFAB) were radiologically compared with triple ligament tenodesis (TLT), in the cadaver wrists.

Materials and Methods

The study was carried out on a total of 16 fresh frozen cadaver wrists. Samples were randomly allocated to the groups treated with 3 different scapholunate instability treatment methods. These are TLT (n: 6), spiral antipronation tenodesis (n: 5) and ANAFAB tenodesis (n: 5) groups. In all samples SLIL, DCSS, STT, DIC, RSC and LRL ligaments were cut in the same way to create scapholunate instability. Wrist CT scans were taken on the samples in 4 different states, in intact, after the ligaments were cut, after the reconstruction and after the movement cycle. In all of these 4 states, wrist CTs were taken in 6 different wrist positions. For every state and every position through tomography images; Scapholunate (SL) distance, Scapholunate (SL) angle, Radioscaphoid (RS) angle, Radiolunate (RL) angle, Capitolunate (CL) angle, Dorsal scaphoid translation (Dt) measurements were made.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 65 - 65
1 Dec 2021
Addai D Zarkos J Pettit M Kumar KHS Khanduja V
Full Access

Abstract

Objectives

Outcomes following different types of surgical intervention for FAI are well reported individually but comparative data is deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyse the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO) and surgical hip dislocation (SHD).

Methods

This SR was registered with PROSPERO. An electronic database search of Pubmed, Medline and EMBASE for English and German language articles over the last 20 years was carried out according to the PRISMA guidelines. We specifically analysed and compared changes in patient reported outcome measures PROMs, α-angle, rate of complications, rate of revision and conversion to total hip arthroplasty (THA).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 19 - 19
1 Mar 2021
Mischler D Schader JF Windolf M Varga P
Full Access

To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the humeral head suggest that the primary implant stability may be improved by optimizing the screw orientations. Finite element (FE) analysis allows testing of various implant configurations repeatedly to find the optimal design. The aim of this study was to evaluate whether computational optimization of the orientation of the PHILOS plate locking screws using a validated FE methodology can improve the predicted primary implant stability.

The FE models of nineteen low-density (humeral head BMD range: 73.5 – 139.5 mg/cm3) left proximal humeri of 10 male and 9 female elderly donors (mean ± SD age: 83 ± 8.8 years) were created from high-resolution peripheral computer tomography images (XtremeCT, Scanco Medical, Switzerland), using a previously developed and validated computational osteosynthesis framework. To simulate an unstable mal-reduced 3-part fracture (AO/OTA 11-B3.2), the samples were virtually osteotomized and fixed with the PHILOS plate, using six proximal screws (rows A, B and E) according to the surgical guide. Three physiological loading modes with forces taken from musculoskeletal models (AnyBody, AnyBody Technology A/S, Denmark) were applied. The FE analyses were performed with Abaqus/Standard (Simulia, USA). The average principal compressive strain was evaluated in cylindrical bone regions around the screw tips; since this parameter was shown to be correlated with the experimental number of cycles to screw cut-out failure (R2 = 0.90). In a parametric analysis, the orientation of each of the six proximal screws was varied by steps of 5 in a 5×5 grid, while keeping the screw head positions constant. Unfeasible configurations were discarded. 5280 simulations were performed by repeating the procedure for each sample and loading case. The best screw configuration was defined as the one achieving the largest overall reduction in peri-screw bone strain in comparison with the PHILOS plate.

With the final optimized configuration, the angle of each screw could be improved, exhibiting significantly smaller average bone strain around the screw tips (range of reduction: 0.4% – 38.3%, mean ± SD: 18.49% ± 9.56%).

The used simulation approach may help to improve the fixation of complex proximal humerus fractures, especially for the target populations of patients at high risk of failure.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 26 - 26
1 Mar 2021
Malik S Hart D Parashin S Malik S McRae S MacDonald P
Full Access

Abstract

Objectives

To evaluate mechanical properties of three suture-tendon constructs, the Krackow stitch (KS), the modified Prusik knot (PK) and the Locking SpeedWhip (LSW), using human cadaveric quadriceps grafts (QT).

Methods

Thirty QT grafts were obtained from human cadaver specimens and an equal number of tendon-suture constructs were prepared for three stitches: KS, PK and LSW. The constructs were mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subject to tensile loading based on an established protocol. Load and displacement data for each tendon-suture construct were recorded.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 124 - 124
1 Dec 2020
CETIN M SOYLEMEZ MS OZTURK BY MUTLU I KARAKUS O
Full Access

Bone-patellar tendon-bone autografts, hamstring autografts or allografts are widely used grafts for ACL revision surgeries. Also use of quadriceps autograft for both primary and revision ACL surgeries is in an increasing popularity due to its biomechanical superior properties and less donor site morbidity. However, although several fixation techniques and devices for quadriceps tendon graft fixation on femoral side have been reported, literature lacks about biomechanical studies comparing properties of these different fixation techniques and devices. We aimed to investigate whether there is a difference between the fixation techniques of quadriceps tendon graft by using different fixation techniques and devices on the femoral side in terms of stiffness and amount of slippage in the tunnel.

Full-thickness central parts of quadriceps tendons from paired knees of twenty five calf knees were fixed through a 10mm x 25mm tunnel in twenty five paired sheep femurs. Quadriceps tendon patellar side with soft tissue ending fixed with four different fixation devices (adjustable suspensory system (group 1), absorbable interference screw (group 2), titanium interference screw (group 3) and adjustable suspensory system + absorbable interference screw (group 4)) and quadriceps tendon with a patellar bone plug fixed with a titanium interference screw (group 5) were tested in a servohydraulic materials testing machine. 10 samples were included in each group. After applying a preload of 10 N, a cyclic force was applied for 20 cycles from 10N to 110N at a 1 hertz frequency. Amount of slippage in the tunnel was calculated as the difference measured in millimeters between length at 10 N after 20 cycles and starting length at 10 N (Graph 1). To determine the stiffness, a single load-to-failure cycle was performed at a strain rate of 20 mm/min as the last step (Figure 1).

Rupture of the graft was not seen in any of the samples. Median values of amount of slippage in the tunnel were 6,41mm, 5,99mm, 3,01mm, 4,83mm, and 3,94mm respectively. Median values of maximum load at failure were 464N, 160N, 350N, 350N and 389N respectively. Amount of slippage in the tunnel was highest in the group 1 and was lowest in the group 3 (p<0.001). Group 1 was found to be most resistant group against load-to-failure test and group 2 was the weakest (p<0.001). However inter-group analyses between group 3 and 5 revealed that, although group 3 had the least slippage in the tunnel, group 5 was better in terms of stiffness, but there was no statistically significant difference (p=0,124 and 0,119 respectively). There was a significant difference between group 2 and 3 in both amount of slippage in the tunnel and stiffness (p=0,001 and 0.028 respectively)(Table 1).

Our study revealed that, although quadriceps graft with a bone plug fixed with metal interference screws is widely presumed to be a stable fixation technique, there was no significant difference in terms of stiffness when compared with quadriceps graft with soft tissue ending fixed with a metal interference screw. Although adjustable suspensory device group was the best in the terms of resistance against load-to-failure, it was the worst in terms of amount of slippage from the tunnel. Thus, if a suspensory device is to be used, it must be kept in mind that a strong 20 cycles of intra-operative tension force must be applied to prevent further slippage of the graft in the tunnel which can result in failure of reconstruction.

For any figures or tables, please contact the authors directly.


Abstract

Background

Rotator cuff injuries have traditionally been managed by either single-row or double-row arthroscopic repair techniques. Novel and more complex single-row methodologies have recently been proposed as a biomechanically stronger alternative. However, no rigorous meta-analysis has evaluated the effectiveness of complex single-row against double-row repair. This meta-analysis aims to evaluate clinical outcomes in patients with full-thickness rotator cuff injuries treated with both simple and complex single-row, as well as transosseous-equivalent double-row procedures.

Methods

An up-to-date literature search was performed using the pre-defined search strategy. All studies that met the inclusion criteria were assessed for methodological quality and included in the meta-analysis. Pain score, functional score, range-of-motion and Re-tear rate were all considered in the study.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 91 - 91
1 Nov 2021
Aljasim O Yener C Demirkoparan M Bilge O Küçük L Gunay H
Full Access

Introduction and Objective

Zone 2 flexor tendon injuries are still one of the challenges for hand surgeons. It is not always possible to achieve perfect results in hand functions after these injuries. There is no consensus in the literature regarding the treatment of zone 2 flexor tendon injuries, tendon repair and surgical technique to be applied to the A2 pulley. The narrow fibro-osseous canal structure in zone 2 can cause adhesions and loss of motion due to the increase in tendon volume due to surgical repair. Different surgical techniques have been defined to prevent this situation. In our study, in the treatment of zone 2 flexor tendon injuries; Among the surgical techniques to be performed in addition to FDP tendon repair; We aimed to compare the biomechanical results of single FDS slip repair, A2 pulley release and two different pulley plasty methods (Kapandji and V-Y pulley plasty).

Materials and Methods

In our study, 12 human upper extremity cadavers preserved with modified Larssen solution (MLS) and amputated at the mid ½ level of the arm were used. A total of 36 fingers (second, third and the fourth fingers were used for each cadaver) were divided into four groups and 9 fingers were used for each group. With the finger fully flexed, the FDS and FDP tendons were cut right in the middle of the A2 pulley and repaired with the cruciate four-strand technique. The surgical techniques described above were applied to the groups. Photographs of fingers with different loads (50 – 700 gr) were taken before and after the application. Proximal interphalangeal (PIP) joint angle, PIP joint maximum flexion angle and bowstring distance were measured. The gliding coefficient was calculated by applying the PIP joint angle to the single-phase exponential association equation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 4 - 4
1 Apr 2017
Hapa O Başçı O Horoz L Ertem F Karakaşlı A Havitçioglu H
Full Access

Background

Acetabular labral tears can cause pain and microinstability and are the most common indication for hip arthroscopy. Hip labral repair demonstrates better clinical outcome scores at a mean of 3.5 years post surgery than labral excision and tends to be performed in a younger age group. While different labral stitch configurations are possible, the most frequently used are a mattress stitch passed though the hip labrum at its widest part, or a simple loop surrounding the labrum. To determine the strength of variousrepair techniques and the impact suture passer sizesonhip labrum failure after cyclic loading.

Methods

35 unattached fresh-frozen bovine hip labrums were assigned to 5 repair techniques (7 specimens each): Group 1: horizontal mattress using a penetrating grasper; Group 2: vertical mattress using a penetrating grasper; Group 3: vertical mattress using asuture lasso; Group 4: Oblique repair using a penetrating grasper; Group 5: vertical mattress using a penetrating grasper and monopolar radio frequency device. Using a materials testing machine and after a 10N preload, each contruct was subjected to 20 cycles at 5N–80N. Cyclic elongation, peak-to-peak displacement, ultimate failure load, stiffness, and failure mode were recorded.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 184 - 184
1 Jul 2014
Hydorn C Nathe K Kanwisher M DesJardins J Rogers M Bertram A
Full Access

Summary Statement

This study examined the fixation stiffness of 13 tibial and 12 femoral Salter-Harris fracture fixation methods, and determined that screws and screws+ k-wires methods provided the highest stability. In situations where k-wire use is unavoidable, threaded k-wires are preferable.

Introduction

Salter-Harris fractures of the proximal tibia and distal femur are common in pediatric patients that present to orthopedic surgeons. Salter-Harris type I fractures are characterised by breaks that extend only through the physis while Salter-Harris II fractures are the most common, accounting for 85% of Salter-Harris fractures, and extend past the growth plate, exiting through the metaphyseal bone. Fixation of these fracture types can be accomplished using a variety of methods including the use of Kirschner wires, cannulated screws, and a combination of both materials. Stability of fracture fixation is of utmost importance as persistent motion at the fracture margin leads to deformity. The purpose of this study is to analyze the biomechanical efficacy of various fixation methods used to stabilise Salter-Harris I and II fracture patterns in both the proximal tibia and distal femur. Stiffness, the primary gauge of efficacy, will be tested in flexion and extension, varus and valgus movement, and internal and external rotation and will be compared to determine the optimal fixation method.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 77 - 77
1 Jul 2014
Kojima K Lenz M Nicolino T Hofmann G Richards R Gueorguiev B
Full Access

Summary Statement

Tibia plateau split fracture fixation with two cancellous screws is particularly suitable for non-osteoporotic bone, whereas four cortical lag screws provide a comparable compression in both non-osteoporotic and osteoporotic bone. Angle-stable locking plates maintain the preliminary compression applied by a reduction clamp.

Introduction

Interfragmentary compression in tibia plateau split fracture fixation is necessary to maintain anatomical reduction and avoid post-traumatic widening of the plateau. However, its amount depends on the applied fixation technique. The aim of the current study was to quantify the interfragmentary compression generated by a reduction clamp with subsequent angle-stable locking plate fixation in an osteoporotic and non-osteoporotic synthetic human bone model in comparison to cancellous or cortical lag screw fixation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 55 - 55
1 Mar 2013
Skrzypiec D Holub O Liddle A Borse V Timothy J Cook G Kapur N Hall R
Full Access

INTRODUCTION

Over 85% of patients with multiple myeloma (MM) have bone disease, mostly affecting thoraco-lumbar vertebrae. Vertebral fractures can lead to pain and large spinal deformities requiring application of vertebroplasty (PVP). PVP could be enhanced by use of Coblation technique to remove lesions from compromised MM vertebrae prior to cement injection (C-PVP).

METHODS

28 cadaveric MM vertebrae, were initially fractured (IF) up to 75% of its original height on a testing machine, with rate of 1mm/min. Loading point was located at 25% of AP-diameter, from anterior. Two augmentation procedure groups were investigated: PVP and C-PVP. All vertebrae were augmented with 15% of PMMA cement. At the end of each injection the perceived injection force (PIF) was graded on a 5-point scale (1 very easy to 5 almost impossible). Augmented MM vertebrae were re-fractured, following the same protocol as for IF. Failure load (FL) was defined as 0.1% offset evaluated from load displacement curves.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 79 - 79
1 Aug 2012
Houston D Amin A White T Hall A
Full Access

Intra-articular screw fixation is indicated for internal fixation of large osteochondral fragments secondary to trauma or osteochondritis dissecans. During surgery, orthopaedic drills are used to prepare a hole through which the screw can pass. Previous work has shown that mechanical injury to articular cartilage results in a zone of cell death adjacent to the traumatised articular cartilage (1). Here, we characterise and quantify the margin of in situ chondrocyte death surrounding drill holes and screws (standard cortical and headless compression designs) placed in mature bovine articular cartilage to model the orthopaedic procedure.

Drill holes (1mm) were made through the articular cartilage and bone of intact bovine metacarpophalangeal joints obtained from 3-yr old cows within 12hrs of slaughter. Osteochondral explants (∼1cm square and 2-3mm thick) encompassing the drilled holes in articular cartilage and subchondral bone were harvested using a chisel. Explants were then incubated in Dulbecco's modified Eagle's medium for 45mins with CMFDA (5-chloromethylfluorescein diacetate) and PI (propidium iodide; both at 10micromolar) to identify/quantify living and dead in situ chondrocytes respectively in a consecutive series of axial optical sections using confocal scanning laser microscopy (CLSM).

The drill holes through cartilage appeared to have clearly defined edges with no macroscopic evidence of cartilage splitting. However visualisation of fluorescently-labelled in situ chondrocytes by CLSM demonstrated clear cell death around the periphery of the drilled hole which was 166±19 micrometers in width. This increased with a larger diameter (1.5mm) drill to 450±151 micrometers (all data are means±s.e.m.; n=3). Preliminary experiments indicated that the margin of chondrocyte death around a 1.5mm hole was dramatically increased further by the insertion of screws into pre-drilled holes.

These results suggest that the mechanical trauma associated with cartilage drilling and the insertion of intra-articular screws occurs with marked death of in situ chondrocytes extending into normal cartilage beyond the area occupied by the screw. As chondrocytes are not replaced in mature cartilage, their loss around the hole/screw will mean that the extracellular matrix is not maintained, inevitably leading to cartilage failure.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 868 - 872
1 Jun 2005
Metcalfe AJ Saleh M Yang L

Biomechanical studies involving all-wire and hybrid types of circular frame have shown that oblique tibial fractures remain unstable when they are loaded. We have assessed a range of techniques for enhancing the fixation of these fractures. Eight models were constructed using Sawbones tibiae and standard Sheffield ring fixators, to which six additional fixation techniques were applied sequentially.

The major component of displacement was shear along the obliquity of the fracture. This was the most sensitive to any change in the method of fixation. All additional fixation systems were found to reduce shear movement significantly, the most effective being push-pull wires and arched wires with a three-hole bend. Less effective systems included an additional half pin and arched wires with a shallower arc. Angled pins were more effective at reducing shear than transverse pins.

The choice of additional fixation should be made after consideration of both the amount of stability required and the practicalities of applying the method to a particular fracture.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 25 - 25
17 Nov 2023
Mok S Almaghtuf N Paxton J
Full Access

Abstract. The lateral ligaments of the ankle composed of the anterior talofibular (ATFL), calcaneofibular (CFL) and posterior talofibular ligaments (PTFL), are amongst the most commonly injured ligaments of the human body. Although treatment methods have been explored exhaustively, healing outcomes remain poor with high rates of re-injury, chronic ankle instability and pain persisting. The introduction and application of tissue engineering methods may target poor healing outcomes and eliminate long-term complications, improving the overall quality of life of affected individuals. For any surgical procedure or tissue-engineered replacement to be successful, a comprehensive understanding of the complete anatomy of the native structure is essential. Knowledge of the dimensions of ligament footprints is vitally important for surgeons as it guides the placement of bone tunnels during repair. It is also imperative in tissue-engineered design as the creation of a successful replacement relies on a thorough understanding of the native anatomy and microanatomical structure. Several studies explore techniques to describe ligament footprints around the body, with limited studies describing in-depth footprint dimensions of the ATFL, CFL and PTFL. Techniques currently used to measure ligament footprints are complex and require resources which may not be readily available, therefore a new methodology may prove beneficial. Objectives. This study explores the application of a novel technique to assess the footprint of ankle ligaments through a straightforward inking method. This method aims to enhance surgical technique and contribute to the development of a tissue-engineered analogue based on real anatomical morphometric data. Methods. Cadaveric dissection of the ATFL, CFL and PTFL was performed on 12 unpaired fresh frozen ankles adhering to regulations of the Human Tissue (Scotland) Act. The ankle complex with attaching ligaments was immersed in methylene blue. Dissection of the proximal and distal entheses of each ligament was carried out to reveal the unstained ligament footprint. Images of each ligament footprint were taken, and the area, length and width of each footprint were assessed digitally. Results. The collective area of the proximal entheses of the ATFL, CFL and PTFL measures 142.11 ± 12.41mm2. The mean areas of the superior (SB) and inferior band (IB) of the distal enthesis of the ATFL measured 41.72 ± 5.01mm2 and 26.66 ± 3.12mm2 respectively. The footprint of the distal enthesis of the CFL measured 146.07 ± 14.05mm2, while the footprint of the distal PTFL measured 126.26 ± 8.88mm2. The proximal footprint of the ATFL, CFL and PTFL measured 11.06 ± 0.69mm, 7.87 ± 0.43mm and 10.52 ± 0.63mm in length and 8.66 ± 0.50mm, 9.10 ± 0.92mm and 14.41 ± 1.30mm in width on average. The distal footprint of the ATFL (SB), ATFL (IB), CFL and PTFL measured 10.92 ± 0.81 mm, 8.46 ± 0.46mm, 13.98 ± 0.93mm and 11.25 ± 0.95mm in length and 7.76 ± 0.59mm, 7.51 ± 0.64mm, 18.98 ± 1.15mm and 24.80 ± 1.25mm in width on average. Conclusions. This methodology provides an effective approach in the identification of the footprint of the lateral ligaments of the ankle to enhance surgical precision and accuracy in tissue-engineered design. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 64 - 64
1 Nov 2018
Orbay J
Full Access

Advancements in treating the unstable elbow. We will review and discuss the kinematics and biomechanics of the forearm, concentrating on the role of soft tissue structures and how they affect forearm and elbow function. During this session, we will review the latest techniques for treating the terrible triad, including solutions to complex injuries of the olecranon, coronoid, and radial head. Techniques presented will address fixation, reconstruction, and salvaging of complex unstable elbow injuries