Introduction. Total knee arthroplasty (TKA) designs evolve as evidence accumulates on natural and prosthetic knee function. TKA designs based upon a medially conforming tibiofemoral articulation seek to reproduce essential aspects of normal knee stability and have enjoyed good clinical success and high patient satisfaction for over two decades. Fluoroscopic kinematic studies on several medially conforming knee designs show extremely stable knee function, but very small ranges of tibial axial rotation compared to healthy knees. The GMK Sphere TKA is a recent evolution in medially-conforming TKA designs that adopts a sagittally unconstrained lateral tibiofemoral articulation to allow more natural tibial rotation. This study was conducted to quantify motions in knees with this prosthesis to address two questions:. Does the medially conforming GMK Sphere design provide an AP-stable articulation that provides for tibiofemoral translations that are comparable to, but not larger than, translations measured in natural knees?. Does the medially conforming GMK Sphere design provide sufficient rotatory laxity to allow tibiofemoral rotations comparable to, but not larger than, rotations measured in natural knees?. Materials and Methods. Fifteen patients (9 females), mean age 65 years and mean BMI of 30 ±3, consented to participate. Sixteen knees received the GMK Sphere TKA. Mean Oxford Knee Score (OKS) improved significantly from 19±7 to 40±3 six months post surgery (P< 0.0001). On the day of the study, the mean OKS, Knee Society Score, EQ5D and Heath status scores were 40, 87, 0.83 and 85 respectively. Mean ROM from active maximum extension till maximum supine flexion was 108°±8°. Motions in 16 knees were observed using pulsed-fluoroscopy during a range of activities. Subjects were observed in maximum flexion kneeling and lunging positions, and in stepping up/down on a 22cm step. Model-image registration methods were used to quantify three-dimensional knee motions from digitized fluoroscopic images. Results. Tibial internal rotation averaged 8° during lunge and kneeling activities. During lunging, the medial and lateral condyles were an average of 2mm and 8mm posterior to the tibial sulcus, respectively, and 2mm and 9mm posterior to the tibial sulcus during kneeling. During the stair-stepping activity, the medial condyle did not translate significantly, while the lateral condyle moved 5mm posteriorly with flexion, accompanying 5° tibial internal rotation. Discussion. The GMK Sphere
BACKGROUND. The need for post-operative manipulation under anesthesia (MUA) for stiffness after primary total knee arthroplasty is a frustrating complication that can lead to suboptimal outcomes if range-of-motion to a functional level is not regained. Implant morphology and kinematics, PCL imbalance, and soft-tissue balancing can all contribute to post-operative stiffness. Utilization of total knee arthroplasty components that replicate the native knee's medial ball and socket kinematics may lead to easier maintenance of flexion post-operatively compared to conventional components. PURPOSE. To determine if a medial pivot
Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs. In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis.Aims
Methods
Aims: description of results obtained with a single radius
Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia. During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65). The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic design to manifest its innovative features.
Following total knee arthroplasty, patients often complain of an unnatural feeling in their knee joint, which in turn limits their activities [Noble et al, CORR 2006]. To develop an implant design that recreates the motion of the natural knee, both the functional kinematics as well as the laxity of the joint need to be understood. All testing was performed using a KUKA (KUKA Robotics, Augsburg, Germany) 6 degree of freedom robotic arm and a six degree of freedom load cell (ATI Industrial Automation, Apex, North Carolina, USA), attached to the arm (Figure 1). FUNCTIONAL KINEMATICS: Eight cadaveric specimens implanted with contemporary cruciate retaining implants were used for this evaluation. The functional activity, lunge, was simulated using kinematic control for flexion/extension and force-torque control for the other degrees of freedom. The inputs for the force-torque control were obtained from e-tibia data from live patients during the lunge activity [Varadarajan et al, J Biomech 2008]. At a given flexion angle, the robot moved in force-torque control to obtain the desired values within given tolerances (± 2.5N & ± 0.1 Nm). When these tolerances were met the position of femur with respect to the tibia was recorded and the knee flexed to the next level. The lunge simulation began at full extension and ended at 120 degrees of knee flexion, through 1 degree increments. The kinematic data from the contemporary CR implants were compared to JOINT LAXITY: Eight native, unimplanted knees were used for this evaluation. Joint laxity of the knee joint was evaluated at 0, 30, 60, 90, and 120 degrees of knee flexion by applying various loads to the tibia and quantifying the resulting motion of the tibia. The resulting laxities were compared to various knee laxity studies in the literature.Introduction:
Methods:
The SAIPH™ (MatOrtho, UK) total knee replacement is a new fixed-bearing prosthesis design having attributes of a mobile bearing and the posterior stabilised categories for knee arthroplasties. The implant design goal is an articulation that provides definitive anteroposterior stability to beneficially control tibiofemoral translation, the ability for the tibia to axially rotate to accommodate various lifestyle activities, and to maintain a relatively posterior femoral position on the tibia to facilitate range of motion. This study aims to analyze knee kinematics of the SAIPH™ total knee arthroplasty (TKA) by videofluroscopy during four different weightbearing activities. Fourteen consecutive patients operated on by a single surgeon, with a minimum follow up of 24 months were included in this IRB-approved study. A medially conforming knee was implanted in all cases. Participants in the study were asked to perform weightbearing kneeling, lunging, step-up/down and pivoting activities while their knee motions were recorded by videofluoroscopy. Three-dimensional (3D) joint kinematics were determined using model-image registration. The 3D orientation of each TKA component was expressed using standard joint angle conventions, and the anterior/posterior location of each condyle was expressed relative to the deepest part of the tibial sulcus.Introduction
Method
At present, computational modeling has not been utilized as a design tool for total knee replacement (TKR). Also, classifying a new design as successful usually requires many years of long-term clinical follow-up studies. Computational modeling presents an opportunity to contribute to implant design evaluations and prediction of long-term success, during the early stages of the implant design process. The purpose of this study was to construct a computational model that will determine and compare in vivo dynamic forces and torques of the non implanted and implanted knees. It is hypothesized that this model will provide valuable information pertaining to post-implantation boundary conditions during the design phase. A three-dimensional (3-D), inverse dynamics model of the human lower limb was created. System differential equations were derived for the human lower extremity using Kane’s theory of dynamics.Input kinematics were obtained for five normal knees and five posterior stabilized TKR, determined while subjects performed deep knee bend while under fluoroscopic surveillance. Musculo tendinous units were assumed to act along straight line segments, and ligamentous units were represented by nonlinear elastic elements. Knee kinetics were calculated and compared fo reach group and a comparison was conducted. Kinetics were much more variable for the TKR group, and tibiofemoral contact forces were on average higher than the normal group: 2.47 times body weight (BW) and 2.21 BW, respectively. Increased posterior femoral rollback lead to lower axial contact forces and lower quadriceps forces in both groups. Force patterns were very sensitive to input patient specific kinematics. The predicted tibio femoral forces were higher in TKR subjects, which is consistent with current clinical knowledge. Force patterns for the normal subjects were more consistent than those forthe TKR subjects, which was primarily attributed to the greater variance in kinematics for the TKR subjects. This study represents a first step in constructing a design facilitation tool for TKR technology. Successful designs will be determined by producing kinetic patterns most similar to normal knee patterns.
While survivorship of total knee arthroplasty (TKA) is excellent, up to 25% of patients remain dissatisfied with their outcome [1, 2]. Knee instability, which is common during high demand activities, contributes to patient dissatisfaction [3]. As younger patients undergo TKA, longevity requirements and functional demands will rise [4]. Design factors influence the functional outcome of the procedure [5, 6], although in clinical studies it can be difficult to distinguish joint mechanics differences between designs due to confounding variability in patient-related factors. The objective of the current study was to assess the stability and mechanics of several current TKA designs during high-demand dynamic activities using a computational model of the lower limb. Three high-demand dynamic activities (gait, stepdown, squat) were simulated in a previously described lower limb model (Fig. 1) [7]. The model included calibrated tibiofemoral (TF) soft-tissue structures, patellofemoral (PF) ligaments and extensor mechanism [8]. Loading conditions for the simulations were derived from telemetric patient data in order to evaluate TKA designs under physiological kinematic and loading conditions [7, 9]. Four fixed-bearing TKA designs (both cruciate-retaining (CR) and posterior-stabilizing (PS) versions) were virtually implanted into the lower limb model and joint motion, contact mechanics and interface loads were evaluated during simulation of each dynamic activity.Introduction:
Methods:
Aims. Analysis of the morphology of the distal femur, and by extension
of the femoral components in total knee arthroplasty (TKA), has
largely been related to the aspect ratio, which represents the width
of the femur. Little is known about variations in trapezoidicity
(i.e. whether the femur is more rectangular or more trapezoidal).
This study aimed to quantify additional morphological characteristics
of the distal femur and identify anatomical features associated
with higher risks of over- or under-sizing of components in TKA. Methods. We analysed the shape of 114 arthritic knees at the time of primary
TKA using the pre-operative CT scans. The aspect ratio and trapezoidicity
ratio were quantified, and the post-operative prosthetic overhang
was calculated. We compared the morphological characteristics with
those of 12 TKA models. Results. There was significant variation in both the aspect ratio and
trapezoidicity ratio between individuals. Femoral trapezoidicity
was mostly due to an inward curve of the medial cortex. Overhang
was correlated with the aspect ratio (with a greater chance of overhang
in narrow femurs), trapezoidicity ratio (with a greater chance in
trapezoidal femurs), and the tibio-femoral angle (with a greater
chance in valgus knees). . Discussion. This study shows that rectangular/trapezoidal variability of
the distal femur cannot be ignored. Most of the femoral components
which were tested appeared to be excessively rectangular when compared
with the bony contours of the distal femur. These findings suggest
that the
Introduction. Total-knee-arthroplasty (TKA) is a well-established method to restore the joint function of the human knee. Different types of TKA designs are clinically available which can be divided in two main groups, the posterior-cruciate- ligament (PCL) sacrificing and retaining group. However, pre-operatively it is often difficult to plan for one or the other. Therefore, the research question was: Is it possible to develop a
Conventional implant designs in total knee arthroplasty (TKA) are based on metal on UHMWPE bearing couples. Although this procedure is quite successful, early loosening is still a matter of concern. One of the causes for early failure is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The introduction of a polyetheretherketone (PEEK) on UHMWPE bearing couple could address this problem. With mechanical properties more similar to distal (cortical) bone it could allow stresses to be distributed more naturally in the distal femur. A potential adverse effect, however, is that the femoral component and the underlying cement mantle may be at risk of fracturing. Therefore, we analyzed the effect of a PEEK-Optima® femoral component on stress shielding and the integrity of the component and cement mantle, compared to a conventional Cobalt-Chromium (CoCr) alloy implant. We created a Finite Element (FE) model of a reconstructed knee in gait, based on the ISO-14243-1 standard. The model consisted of an existing cemented cruciate retaining TKA design implanted on a distal femur, and a tibial load applicator, which together with the bone cement layer and the tibial implant is referred to as the tibial construct. The knee flexion angle was controlled by the femoral construct, consisting of the femoral implant, the bone cement and the distal femur. The tibial construct was loaded with an axial force, anterior-posterior (AP) force and a rotational torque, representing the ground reaction force, soft tissue constraints and internal/external rotation of the tibia, respectively. The integrity of the femoral component and cement mantle were expressed as a percentage of their yield stress. Stress shielding in the periprosthetic femur was evaluated by the strain energy (density) in the bone and compared to a model replicating an intact knee joint.Introduction
Methods
Many prosthetic design changes have been introduced in attempt to improve outcomes following TKA; however there is no consensus as to whether these changes confer benefits to patients. This study aimed to assess whether patients treated with a modern implant design had an enhanced patient outcome compared to a traditional model in a double blind randomised controlled trial. 212 consecutive patients were prospectively randomised to receive either a modern (Triathlon) or a traditional (Kinemax) TKA (both Stryker Orthopaedics). 6 surgeons at a single unit performed all procedures in a standardised manner. A single researcher, blinded to implant allocation, performed all assessments. Patients were assessed pre-operatively, and at 6, 26, 52 weeks post-surgery with the Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, goniometry, timed functional assessment, lower limb power (Leg Extensor Power Rig) and pain numerical rating scales (NRS). Change in scores and between group differences were assessed with Two-Way Repeated Measures ANOVAs.Introduction
Methods
Controversy still remains as to whether patella resurfacing in total knee arthroplasty (TKA) should be conducted as a matter of routine. Some authors recommend routine resurfacing of the patella and advocate this due to the reduction in post-operative anterior knee pain and the reduction in requirement for revision surgery. A database search was conducted to identify prospective randomized controlled studies only. Eighteen prospective randomized trials were identified and found eligible for inclusion. A cumulative sample of 8006 knees were involved, 3418 undergoing resurfacing and 4588 undergoing no resurfacing. Primary outcome data extracted was incidence of secondary operations, incidence of anterior knee pain and functional outcome scores including subgroup analysis of the type of prosthesis used in each study. Der Simonian Laird metanalysis was conducted if studies were found to be homogenous where statistical significance was defined as an overall alpha error of <
0.05. No statistically significant differences were found to exist between patients undergoing patella resurfacing as a primary total knee replacement and those who preserved the native patella. No differences could be found between specific prosthetic design when subgroup analysis was conducted. The study does not offer evidence to suggest any advantage of resurfacing versus non-resurfacing. Furthermore, no significant discrepancy existed when comparing different types of total knee prosthesis. This may be due that all the knees analysed are designed to be patella friendly and allow conformity of articulation of both a native and patella button equally
Aims. The objective of this study was to compare the two-year migration pattern and clinical outcomes of a total knee arthroplasty (TKA) with an asymmetrical tibial design (Persona PS) and a well-proven TKA with a symmetrical tibial design (NexGen LPS). Methods. A randomized controlled radiostereometric analysis (RSA) trial was conducted including 75 cemented posterior-stabilized TKAs. Implant migration was measured with RSA. Maximum total point motion (MTPM), translations, rotations, clinical outcomes, and patient-reported outcome measures (PROMs) were assessed at one week postoperatively and at three, six, 12, and 24 months postoperatively. Results. A linear mixed-effect model using RSA data of 31 asymmetrical and 38 symmetrical TKAs did not show a difference in mean MTPM migration pattern of the tibial or femoral components. Mean tibial component MTPM at two years postoperative of the asymmetrical
Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR)
Aims. The use of cementless total knee arthroplasty (TKA) components has increased during the past decade. The initial design of cementless metal-backed patellar components had shown high failure rates due to many factors. The aim of this study was to evaluate the clinical results of a second-generation cementless, metal-backed patellar component of a modern design. Methods. This was a retrospective review of 707 primary TKAs in 590 patients from a single institution, using a cementless, metal-backed patellar component with a mean follow-up of 6.9 years (2 to 12). A total of 409 TKAs were performed in 338 females and 298 TKAs in 252 males. The mean age of the patients was 63 years (34 to 87) and their mean BMI was 34.3 kg/m. 2. (18.8 to 64.5). The patients were chosen to undergo a cementless procedure based on age and preoperative radiological and intraoperative bone quality. Outcome was assessed using the Knee Society knee and function scores and range of motion (ROM), complications, and revisions. Results. A total of 24 TKAs (3.4%) in 24 patients failed and required revision surgery, of which five were due to patellar complications (0.71%): one for aseptic patellar loosening (0.14%) and four for polyethylene dissociation (0.57%). A total of 19 revisions (2.7%) were undertaken in 19 patients for indications which did not relate to the patella: four for aseptic tibial loosening (0.57%), one for aseptic femoral loosening (0.14%), nine for periprosthetic infection (1.3%), one for popliteus impingement (0.14%), and four for instability (0.57%). Knee Society knee and function scores, and ROM, improved significantly when comparing pre- and postoperative values. Survival of the metal-backed patellar component for all-cause failure was 97.5% (95% confidence interval 94.9% to 100%) at 12 years. Conclusion. The second-generation cementless
Introduction. Inability to reproduce 6-degrees of freedom (6DOF) kinematics, abnormal “paradoxical” anterior femoral translation and loss of normal medial pivot rotation are challenges associated with contemporary posterior cruciate retaining and posterior stabilized total knee arthroplasty (TKA). The removal of the anterior and/or both cruciate ligaments in CR/PS TKA, leading to significant kinematic alteration of the knee joint, has been suggested as one of the potential contributory factors in patients remaining dissatisfied after TKA. Bi-cruciate retaining (BCR) TKA designs allow preservation of both anterior and posterior cruciate ligaments with the potential to replicate normal knee joint kinematics. Physically demanding tasks such as sit-to-stand (STS), and deep lunging may be more sensitive tools for investigating preserved kinematic abnormalities following TKA. This study aims to compare in-vivo kinematics between the operated and the contralateral non-operated knee in patients with contemporary BCR
Aims. Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented
Aims. To establish our early clinical results of a new total knee arthroplasty (TKA) tibial component introduced in 2013 and compare it to other designs in use at our hospital during the same period. Methods. This is a retrospective study of 166 (154 patients) consecutive cemented, fixed bearing, posterior-stabilized (PS) TKAs (ATTUNE) at one hospital performed by five surgeons. These were compared with a reference cohort of 511 knees (470 patients) of other designs (seven manufacturers) performed at the same hospital by the same surgeons. There were no significant differences in age, sex, BMI, or follow-up times between the two cohorts. The primary outcome was revision performed or pending. Results. In total, 19 (11.5%) ATTUNE study TKAs have been revised at a mean 30.3 months (SD 15), and loosening of the tibial component was seen in 17 of these (90%). Revision is pending in 12 (7%) knees. There was no difference between the 31 knees revised or with revision pending and the remaining 135 study knees in terms of patient characteristics, type of bone cement (p = 0.988), or individual surgeon (p = 0.550). In the reference cohort, there were significantly fewer knees revised (n = 13, 2.6%) and with revision pending (n = 8, 1.5%) (both p < 0.001), and only two had loosening of the tibial component as the reason for revision. Conclusion. This new