Advertisement for orthosearch.org.uk
Results 1 - 20 of 44
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 679 - 687
1 Jun 2023
Lou Y Zhao C Cao H Yan B Chen D Jia Q Li L Xiao J

Aims

The aim of this study was to report the long-term prognosis of patients with multiple Langerhans cell histiocytosis (LCH) involving the spine, and to analyze the risk factors for progression-free survival (PFS).

Methods

We included 28 patients with multiple LCH involving the spine treated between January 2009 and August 2021. Kaplan-Meier methods were applied to estimate overall survival (OS) and PFS. Univariate Cox regression analysis was used to identify variables associated with PFS.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 439 - 439
1 Nov 2011
Lombardi A Berend K Adams J
Full Access

Surgeons theorize smaller increments in sizing might better address different sized femurs and size differences between genders. This study examines utilisation of intermediate sized components to determine if availability affects outcomes of women and men undergoing total knee arthroplasty (TKA). We reviewed 1903 consecutive, primary TKA in 1519 patients (64% women) performed with a single implant system. Originally, six femoral sizes were available; four intermediate sizes were added later. The system allows interchange ability of all femoral and tibial sizes and has seven constraint options. Four hundred and five TKA were done prior to intermediate size availability. In women before, 49% were 65mm, 47% 60mm, and 3% 70mm. After, 32% were 62.5mm, 21% 65mm and 8% 67.5mm. In men, 70mm was the most common representing 49% before and 41% after. The 65mm in men dropped from 29% before to 16% after and the 75mm dropped from 21% to 14%. After, 23% were 67.5mm. Minimum follow-up was two years. When comparing women before versus after, women after had significantly better postoperative Knee Society (KS) pain (p=0.0000), clinical (p=0.003) and function scores (p=0.0000), and improvement in clinical (p=0.0000) and function scores (p=0.0001) while improvement in pain score was similar. Men done after had better postoperative KS pain (p=0.02) and function scores (p=0.002), and improvement in KS clinical (p=0.001) and function (p=0.0002) scores. Both men and women undergoing TKA after availability of half sizes had better postoperative KS pain, clinical and functional scores, and improvement from preoperative levels compared with men and women before. We conclude a single TKA system with a wide variety of sizing and constraint options can provide consistently excellent results for both men and women undergoing TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 78 - 78
1 May 2016
Kang S Chang C Woo J Woo M Choi I Kim S
Full Access

Introduction

Even a number of studies have reported clinical outcomes after revision total knee arthroplasty (revision TKA), little information is still available on whether outcomes of patients undergoing a revision TKA as a second stage procedure because of infected TKA are poorer than those of the patients undergoing a single-stage revision TKA because of non-infectious causes. In addition, use of various revision prostheses in most previous studies may limit solid interpretation of the outcomes after revision TKA. This study sought to determine whether outcomes in patients undergoing revision TKA due to infected TKA would be different from those in patients undergoing revision TKA due to non-infectious causes.

Materials and Methods

We assessed 71 cases undergoing revision TKAs with use of a same revision system (Scorpio TS®, Stryker, Mahwah, NJ) from October 1999 to February 2012. All patients followed more than two years and mean follow-up period was 67 months (range: 24 – 168 months). Of them, thirty five patients underwent revisions due to infected TKA (group for infected TKA) while 36 patients due to non-infectious causes including loosening, wear, and/or instability (group for non-infected TKA). All patients in the group for infected TKA underwent two-stage revision surgeries while all patients in the group for non-infected TKA single stage revision surgeries. Comparative variables between two groups were preoperative range of motion (ROM) and American knee society (AKS) scores, postoperative ROM and AKS scores assessed at latest follow-up, amount of bone loss and requirement of stem assessed during the surgeries, and survival rate.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1271 - 1278
1 Dec 2023
Rehman Y Korsvold AM Lerdal A Aamodt A

Aims. This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS). Methods. Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed. Results. Patients reported similar levels of pain, function, satisfaction, and general health regardless of the prosthetic design they received. Mean maximal flexion (129° (95% confidence interval (CI) 127° to 131°) was greater in the PS group than in the CR (120° (95% CI 121° to 124°)) and AS groups (122° (95% CI 120° to 124°)). Conclusion. Despite differences in design and constraint, CR, AS, and PS designs from a single TKA system resulted in no differences in patient-reported outcomes at two-year follow-up. PS patients had statistically better ROM, but the clinical significance of this finding is unclear. Cite this article: Bone Joint J 2023;105-B(12):1271–1278


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 88 - 88
1 Nov 2021
Pastor T Zderic I Gehweiler D Richards RG Knobe M Gueorguiev B
Full Access

Introduction and Objective. Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade. Materials and Methods. Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were biomechanically tested until failure under progressively increasing cyclic loading featuring physiologic loading trajectory, with monitoring via motion tracking. Results. T-score in groups 3 and 4 was significantly lower compared with groups 1 and 2, p=0.03. Stiffness (N/mm) in groups 1 to 4 was 335.7+/−65.3, 326.9+/−62.2, 371.5+/−63.8 and 301.6+/−85.9, being significantly different between groups 3 and 4, p=0.03. Varus (°) and femoral head rotation around neck axis (°) after 10,000 cycles were 1.9+/−0.9 and 0.3+/−0.2 in group 1, 2.2+/−0.7 and 0.7+/−0.4 in group 2, 1.5+/−1.3 and 0.3+/−0.2 in group 3, and 3.5+/−2.8 and 0.9+/−0.6 in group 4, both with significant difference between groups 3 and 4, p<=0.04. Cycles to failure and failure load (N) at 5° varus in groups 1 to 4 were 21428+/−6020 and 1571.4+/−301.0, 20611+/−7453 and 1530.6+/−372.7,21739+/−4248 and 1587.0+/−212.4, and 18622+/−6733 and 1431.1+/−336.7, both significantly different between groups 3 and 4, p=0.04. Conclusions. From a biomechanical perspective, cephalomedullary nailing of trochanteric fractures with use of helical blades is comparable to interlocking screw fixation in femoral head fragments with low bone density. Moreover, bone cement augmentation of helical blades considerably improves their fixation strength in poor bone quality


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 29 - 29
1 Mar 2021
Dalal S Aminake G Chandratreya A Kotwal R
Full Access

Abstract. Introduction. Long term survivorship in Total Knee Arthroplasty is significantly dependent on prosthesis alignment. The aim of this study was to determine, compare and analyse the coronal alignment of the tibial component of a single implant system using 3 different techniques. Method. Retrospective study of cases from a prospectively collected database. Radiological assessment included measurement of the coronal alignment of tibial components of total knee arthroplasties, and its deviation from the mechanical axis. A comparison study of intramedullary, extramedullary and tibial crest alignment methods was performed. Results. 66 consecutive patients (3 groups of 22 each). Mean BMI was 26. The mean angle of deviation from the mechanical axis was significantly lesser (p< 0.05) in the Tibial crest alignment group patients compared to the other 2 groups. Moreover, the number of outliers (+/-3 degrees) were 2 and 4 in the intra and extramedullary group, whereas there were none in the tibial crest group. The inter and intraclass correlation coefficient was 0.8 and 0.9 respectively. Conclusion. The Tibial Crest Alignment Technique is an effective technique to produce consistent results to achieve optimal coronal alignment of the tibial component in TKA, even in patients with high BMI. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Open
Vol. 5, Issue 10 | Pages 818 - 824
2 Oct 2024
Moroder P Herbst E Pawelke J Lappen S Schulz E

Aims

The liner design is a key determinant of the constraint of a reverse total shoulder arthroplasty (rTSA). The aim of this study was to compare the degree of constraint of rTSA liners between different implant systems.

Methods

An implant company’s independent 3D shoulder arthroplasty planning software (mediCAD 3D shoulder v. 7.0, module v. 2.1.84.173.43) was used to determine the jump height of standard and constrained liners of different sizes (radius of curvature) of all available companies. The obtained parameters were used to calculate the stability ratio (degree of constraint) and angle of coverage (degree of glenosphere coverage by liner) of the different systems. Measurements were independently performed by two raters, and intraclass correlation coefficients were calculated to perform a reliability analysis. Additionally, measurements were compared with parameters provided by the companies themselves, when available, to ensure validity of the software-derived measurements.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims

Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT.

Methods

Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1284 - 1291
1 Dec 2022
Rose PS

Tumours of the sacrum are difficult to manage. The sacrum provides the structural connection between the torso and lower half of the body and is subject to both axial and rotational forces. Thus, tumours or their treatment can compromise the stability of the spinopelvic junction. Additionally, nerves responsible for lower limb motor groups as well as bowel, bladder, and sexual function traverse or abut the sacrum. Preservation or sacrifice of these nerves in the treatment of sacral tumours has profound implications on the function and quality of life of the patient. This annotation will discuss current treatment protocols for sacral tumours.

Cite this article: Bone Joint J 2022;104-B(12):1284–1291.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 74 - 74
1 Feb 2020
DeVito P Damodar D Berglund D Vakharia R Moeller E Giveans M Horn B Malarkey A Levy J
Full Access

Background. The purpose of this study was to determine if thresholds regarding the percentage of maximal improvement in the Simple Shoulder Test (SST) and American Shoulder and Elbow Surgery (ASES) score exist that predict “excellent” patient s­atisfaction (PS) following reverse total shoulder arthroplasty (RSA). Methods. Patients undergoing RSA using a single implant system were evaluated pre-operatively and at a minimum 2-year follow-up. Receiver-operating-characteristic (ROC) curve analysis determined thresholds to predict “excellent” PS by evaluating the percentage of maximal improvement for SST and ASES. Pre-operative factors were analyzed as independent predictors for achieving SST and ASES thresholds. Results. 198 (SST) and 196 (ASES) patients met inclusion criteria. For SST and ASES, ROC analysis identified 61.3% (p<.001) and 68.2% (p<.001) maximal improvement as the threshold for maximal predictability of “excellent” satisfaction respectively. Significant positive correlation between the percentage of maximum score achieved and “excellent” PS for both groups were found (r=.440, p<.001 for SST score; r=0.417, p<.001 for ASES score). Surgery on the dominant hand, greater baseline VAS Pain, and cuff arthropathy were independent predictors for achieving the SST and ASES threshold. Conclusion. Achievement of 61.3% of maximal SST score improvement and 68.3% of maximal ASES score improvement represent thresholds for the achievement of “excellent” satisfaction following RSA. Independent predictors of achieving these thresholds were dominant sided surgery and higher baseline pain VAS scores for SST, and rotator cuff arthropathy for ASES. Keywords. Percentage of maximal improvement; Predictors; American Shoulder and Elbow Surgery Score; Simply Shoulder Test; Reverse shoulder Arthroplasty; Satisfaction. Level of Evidence. Level III


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 49 - 49
1 Jul 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar MJ Turgeon T
Full Access

The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivo TKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 35% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years, supine, 16.3 mm3/yr (SD: 27.8) and 11.2 mm3/yr (SD: 18.5) versus standing, 51.3 mm3/yr (SD: 55.9) and 32.7 mm3/yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm3/yr) and 71% of patients at 2 years (Avg: 48.9 mm3/yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Volumetric, weight-bearing wear measurement of TKR using model-based RSA determined an average of 33 mm3/yr at 2 years post-surgery for a modern, non-cross-linked polyethylene bearing. This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, unknown patient activity level, and inability to distinguish wear from plastic creep or deformation under load. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. Further work is needed to validate the accuracy of the measurements in vivo


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 73 - 73
1 Feb 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T
Full Access

Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Methods. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivoTKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Results. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 0–4% of calculated wear rates being negative compared to 29–39% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years; supine, 16.3 mm. 3. /yr (SD: 27.8) and 11.2 mm. 3. /yr (SD: 18.5) versus standing, 51.3 mm. 3. /yr (SD: 55.9) and 32.7 mm. 3. /yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm. 3. /yr) and 71% of patients at 2 years (Avg: 48.9 mm. 3. /yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Discussion and Conclusion. This study demonstrated TKA wear to occur at a rate of approximately 10 mm. 3. /year and 39 mm. 3. /year in patients imaged supine versus standing, respectively, averaged over 2 years of clinical follow-up. In an effort to eliminate the effect of PE creep and deformation, wear was also calculated between 12 and 24 months as 9.3 mm. 3. (standing examinations), This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, and unknown patient activity level. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2016
Goyal N Stulberg SD
Full Access

Introduction. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in total knee arthroplasty (TKA). PSI software executes the preoperative planning process. Several manufacturers have developed proprietary PSI software for preoperative planning. It is possible that each proprietary software has a unique preoperative planning process, which may lead to variation in preoperative plans among manufactures and thus variation in the overall PSI technology. The purpose of this study was to determine whether different PSI software generate similar preoperative plans when applied to a single implant system and given identical MR images. Methods. In this prospective comparative study, we evaluated PSI preoperative plans generated by Materialise software and Zimmer Patient Specific Instruments software for 37 consecutive knees. All plans utilized the Zimmer Persona™ CR implant system and were approved by a single experienced surgeon blinded to the other software-generated preoperative plan. For each knee, the MRI reconstructions for both software programs were evaluated to qualitatively determine differences in bony landmark identification. The software-generated preoperative plans were assessed to determine differences in preoperative alignment, component sizes, and resection depth. PSI planned bone resection was compared to actual bone resection to assess the accuracy of intraoperative execution. Results. Materialise and Zimmer PSI software displayed differences in identification of bony landmarks in the femur and tibia. Zimmer software determined preoperative alignment to be 0.5° more varus (p=0.008) compared to Materialise software. Discordance in femoral component size prediction occurred in 37.8% of cases (p<0.001) with 11 cases differing by one size and 3 cases differing by two sizes. Tibial component size prediction was 32.4% discordant (p<0.001) with 12 cases differing by 1 size. In cases in which both software planned identical femoral component sizes, Zimmer software planned significantly more bone resection compared to Materialise in the medial posterior femur (1.5 mm, p<0.001) and lateral posterior femur (1.4 mm, p<0.001). Discussion. The present study suggests that there is notable variation in the PSI preoperative planning process of generating a preoperative plan from MR images. We found clinically significant differences with regard to bony landmark identification, component size selection, and predicted bone resection in the posterior femur between preoperative plans generated by two PSI software programs using identical MR images and a single implant system. Surgeons should be prepared to intraoperatively deviate from PSI selected size by 1 size. They should be aware that the inherent magnitude of error for PSI bone resection with regard to both planning and execution is within 2–3 mm. Users of PSI should acknowledge the variation in the preoperative planning process when using PSI software from different manufacturers. Manufacturers should continue to improve three-dimensional MRI reconstruction, bony landmark identification, preoperative alignment assessment, component size selection, and algorithms for bone resection in order to improve PSI preoperative planning process


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 31 - 31
1 Mar 2013
Porteous A Murray J Robinson J Hassaballa M
Full Access

Aim. To assess the process of using patient matched cutting blocks in Primary TKA with respect to: radiology, the proposed engineering plans, the process in theatre and cost effectiveness. Background: Patient matched cutting blocks (PMCB) are the subject of much interest in primary TKA. Our unit has experience of over 100 cases with a single system. Method. We have analysed our initial experience with PMCB. We have compared the sizes of implants used in theatres versus the sizes predicted on the image-generated plans. We have assessed the potential time saving in theatre, during each case and in the turn-around time between cases. We have also looked at the number of trays of instruments used in PMCB versus non-PMCB cases. Results. In 5 cases repeat imaging was required, in 3 cases patient movement artefact meant that scans were of insufficient quality and in 2 cases with complex deformity, additional imaging was required to better define the deformity. The tibial size was change intra-operatively in comparison with the plan in 6 cases and on the femoral side, in 2 cases. In each case the change in size could have been predicted by more detailed analysis of the plan pre-operatively. Using PMCB did reduce procedure time but only by approximately 10 minutes. The effect on turn-around time was greater with approximately 20 minutes saved. This was mainly as a result of the standard 7 trays of instruments being reduced to 2 trays. The greatest saving was in the reduction of sterilisation cost which more that covered the cost of the radiology and the cutting block. Conclusion. PMCB technology does allow accurate prediction of implant sizes, but careful checking of the pre-operative plan allows improved accuracy. Theatre efficiency can be improved to potentially allow an extra case per day and the technology does pay for itself in increased efficiency and reduced sterilisation costs. MULTIPLE DISCLOSURES


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 390 - 390
1 Sep 2009
Ruosi C Marinò D Lettera M
Full Access

The surgical treatment of a secondary gonarthrosis caused by haemophilic arthropathy needs high quality in soft tissue balancing and accurate alignment in total knee arthroplasty (TKA), which are essential for good long-term results. Due to the early-onset severe arthropathy, haemophiliacs undergo prosthetic surgery at a younger age than general population; therefore to ensure a longer duration of implantation is a major objective to be reached in this setting. As several prospective randomised studies could show, Computer navigation in prosthetic surgery improve precision concerning geometry of axes, resection planes and implant alignment, by the determination of joint centres (actual axis), amount of bone resection, size of prostheses and check of ligament balance. At our department, since January 2006, we implanted four TKA in four patients (age range 45–52 years) affected by severe Haemophilia B; the same surgeon used a single system (Orthopilot system) in all cases. The quality of implantation was studied on postoperative standardized long leg coronal and lateral x-rays. Our results showed that CAS had greater consistency and accuracy in implant placement. Complications influencing the clinical outcome did not occur. In our experience, drawbacks of the navigation systems are the additional costs and the additional operation time between 15 and 25 min. However, one of the most important advantages of using of this technique in patient affected by coagulation disease, according to the international literature, is the reduction of blood loss after operation. A long-term follow-up of these and of larger samples of patients is needed for testing cost/risk-benefit ratio of Orthopilot in prosthetic surgery of haemophiliacs. Therefore navigated total knee arthroplasty in haemophilic arthropathy is not yet a standard procedure, but this technique could become an important surgical choice in management of severe secondary osteoarthritis in the future


Bone & Joint Open
Vol. 2, Issue 6 | Pages 405 - 410
18 Jun 2021
Yedulla NR Montgomery ZA Koolmees DS Battista EB Day CS

Aims

The purpose of our study was to determine which groups of orthopaedic providers favour virtual care, and analyze overall orthopaedic provider perceptions of virtual care. We hypothesize that providers with less clinical experience will favour virtual care, and that orthopaedic providers overall will show increased preference for virtual care during the COVID-19 pandemic and decreased preference during non-pandemic circumstances.

Methods

An orthopaedic research consortium at an academic medical system developed a survey examining provider perspectives regarding orthopaedic virtual care. Survey items were scored on a 1 to 5 Likert scale (1 = “strongly disagree”, 5 = “strongly agree”) and compared using nonparametric Mann-Whitney U test.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 89 - 90
1 Mar 2010
Banks S Lightcap C Mu S Yamokoski J
Full Access

Kinematics of human joints have been studied using various methods of observation for millennia, including cadaver dissection, mechanical tests, and more recently photogrammetric gait analysis. For just over sixteen years, dynamic single-plane radiographic observations have been used to quantitatively characterize the motions of anatomic and prosthetically replaced joints. These observations have improved the understanding, in particular, of knee function and the influence of prosthetic design and surgical technique on knee kinematics and patient function. Other studies have reported the kinematics of the hip, shoulder, spine and foot/ankle. It is clear that advances in the technologies to acquire and quantify radiographic images of the skeleton in motion can have a major impact on joint mechanics research and, ultimately, clinical diagnosis. This lecture will highlight two avenues of development in our laboratory: open-source software for determining skeletal kinematics from radiographic images, and a novel robotic imaging platform for observing the skeleton in motion. Our group is working on an open-source shape-matching software application that will be freely available to anyone who wishes to use it (sourceforge.net/projects/jointtrack). This flexible platform will allow the modular addition of new capabilities as plug-in components written in a wide range of languages (C++, Python, Java, etc.), and makes heavy use of other open-source and public libraries (I.C.E., OpenGL, VTK, ITK). All of our future developments will use this platform so that the latest results will be available to all, and hopefully other users will share their advances collaboratively. We currently have created a graphical user interface for performing single-plane model-image registration, and are currently working to expand this to handle bi-plane imaging. We also are developing a robotic platform to permit radiographic imaging of human joints during normal, unrestricted, dynamic activities. This platform will move the x-ray source and sensor in response to the patient’s unconstrained motion, providing views with greater diagnostic potential than are acquired with fixed or c-arm imaging systems. This same imaging platform will also provide an extremely flexible platform for cone-beam tomography, so that a single system will be able to perform all imaging functions required for skeletal model-image registration based kinematic measurements. The goal of these endeavors is to advance the possibility that dynamic radiographic analysis of joint motion will soon be a useful, accurate, and routine diagnostic and measurement tool available to enhance the efforts of orthopaedic surgeons in the treatment of their patients


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 271 - 278
1 Feb 2021
Chang JS Ravi B Jenkinson RJ Paterson JM Huang A Pincus D

Aims

Echocardiography is commonly used in hip fracture patients to evaluate perioperative cardiac risk. However, echocardiography that delays surgical repair may be harmful. The objective of this study was to compare surgical wait times, mortality, length of stay (LOS), and healthcare costs for similar hip fracture patients evaluated with and without preoperative echocardiograms.

Methods

A population-based, matched cohort study of all hip fracture patients (aged over 45 years) in Ontario, Canada between 2009 and 2014 was conducted. The primary exposure was preoperative echocardiography (occurring between hospital admission and surgery). Mortality rates, surgical wait times, postoperative LOS, and medical costs (expressed as 2013$ CAN) up to one year postoperatively were assessed after propensity-score matching.


Bone & Joint Open
Vol. 2, Issue 4 | Pages 243 - 254
1 Apr 2021
Tucker A Warnock JM Cassidy R Napier RJ Beverland D

Aims

Up to one in five patients undergoing primary total hip (THA) and knee arthroplasty (TKA) require contralateral surgery. This is frequently performed as a staged procedure. This study aimed to determine if outcomes, as determined by the Oxford Hip Score (OHS) and Knee Score (OKS) differed following second-side surgery.

Methods

Over a five-year period all patients who underwent staged bilateral primary THA or TKA utilizing the same type of implants were studied. Eligible patients had both preoperative and one year Oxford scores and had their second procedure completed within a mean (2 SDs) of the primary surgery. Patient demographics, radiographs, and OHS and OKS were analyzed.


Introduction. The mobile-bearings were introduced in total knee arthroplasty (TKA) to improve the knee performance by simulating more closely ‘normal’ knee kinematics, and to increase the longevity of TKA by reducing the polyethylene wear and periprosthetic osteolysis. However, the superiority between posterior-stabilized mobile-bearing and fixed-bearing designs still remains controversial. The objective of the present study was to compare the mid-term results of Scorpio + Single Axis system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the mobile-bearing knees and Duracon system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the fixed bearing design with regard to clinical and roentgenographic outcome with special reference to any complications and survivorship. Methods. Prospective, randomized, double-blinded controlled study was carried out on 56 patients undergoing primary, unilateral total knee arthroplasty for osteoarthritis, who were divided into two groups. Group I received mobile-bearing knee prosthesis (29 patients) and Group 2 received fixed-bearing prosthesis (27 patients). The patients were assessed by a physical examination and knee scoring systems preoperatively, at a follow-up of three months, six months, and one year after surgery by independent researcher who was not part of the operating team, and was blinded as to the type of implant inserted. We used the Oxford knee score (OKS) and Knee society score (KSS), with Knee Society Knee Score (KSKS) and Knee Society Functional Score (KSFS) being the subsets. The questionnaire for OKS was printed in our national language, and handed over to the patient at each visit. Results. The Knee Society knee scores, pain scores, functional scores and Oxford knee scores were not statistically different (P > 0.05) between the two groups. Mean postoperative range-of-motion of mobile-bearing knees was significantly greater than that of fixed-bearing knees (127º versus 111º, P = 0.011). 72% of patients could sit cross legged, 48% could sit on the floor, and 17% could squat. Kaplan–Meier survival rate was 100%. No spin-out of mobile bearing was observed. The radiological analysis showed no osteolysis or implant loosening. Conclusion. Mobile-bearing, and fixed-bearing knees demonstrated no statistically significant difference in the Oxford knee score, Knee society score, and radiological outcome with 100% survivorship, at 4 to 6.5 years (mean: 5.5 years) follow up. However, the post-operative range-of-motion of mobile-bearing knees was significantly higher than the fixed-bearing designs (mean, 127° versus 111°; range, 95° to 145° versus 80° to 125°)