Advertisement for orthosearch.org.uk
Results 1 - 20 of 138
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 38 - 38
1 Dec 2021
Hopkins T Wright K Roberts S Jermin P Gallacher P Kuiper JH
Full Access

Abstract. Objectives. In the human knee, the cells of the articular cartilage (AC) and subchondral bone (SB) communicate via the secretion of biochemical factors. Chondrocyte-based AC repair strategies, such as articular chondrocyte implantation, are widely used but there has been little investigation into the communication between the native SB cells and the transplanted chondrocytes. We hypothesise that this communication depends on the health state of the SB and could influence the composition and quality of the repair cartilage. Methods. An indirect co-culture model was developed using transwell inserts, representing a chondrocyte/scaffold-construct for repair of AC defects adjoining SB with varying degrees of degeneration. Donor-matched populations of human bone-marrow derived mesenchymal stromal cells (BM-MSCs) were isolated from the macroscopically and histologically best and worst osteochondral tissue, representing “healthy” and “unhealthy” SB. The BM-MSCs were co-cultured with normal chondrocytes suspended in agarose, with the two cell types separated by a porous membrane. After 0, 7, 14 and 21 days, chondrocyte-agarose scaffolds were assessed by gene expression and biochemical analyses. Results. Matched healthy and unhealthy BM-MSCs from five patients undergoing knee arthroplasty (2 male, 3 female; 72.8±2.2. SD. years-old) were used, together with normal chondrocytes from a healthy patient (male; 24 years-old). At day 21, there was significantly more glycosaminoglycan per chondrocyte in the scaffolds co-cultured with healthy BM-MSCs (4.37×10. −4. μg/cell±2.69×10. −5. SEM. ) than in those cultured with unhealthy BM-MSCs (3.52×10. −4. μg/cell±2.19×10. −5. SEM. ; p<0.001). Co-culture with unhealthy BM-MSCs caused a difference in expression of COL2A1 (day 0–21 fold change; unhealthy:-32.8±12.9. SEM. ; healthy:-7.82±4.46. SEM. ; p<0.001) and ACAN (unhealthy:+1.51±0.51. SEM. ; healthy:+4.05±0.49. SEM. ; p=0.002). Conclusions. Co-culture with unhealthy BM-MSCs caused a reduction in GAG deposition and expression of genes encoding matrix-specific proteins, compared to culturing with healthy BM-MSCs. There are clinical implications for cell-based cartilage repair, where the health of the SB may influence the outcome of chondrocyte-based therapies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 72 - 72
2 Jan 2024
Agnes C Murshed M Willie B Tabrizian M
Full Access

Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2. Biocompatibility testing of both cell types is performed using AlamarBlue for metabolic activity, and nucleic acid staining for distribution. Osteoblastic differentiation is assessed through quantification of ALP and osteopontin secretion, as well as osteocalcin and mineralization staining. Differentiation into osteoclasts is verified using SEM and TEM, qPCR, and TRAP staining. Cellular viability of C2C12 cells and monocytes was maintained when cultured separately in scaffolds with and without BIO for 21 days. Both scaffold variations showed a characteristic increase in ALP secretion from day 1 to 7, indicating early differentiation but BIO-incorporated sponges yielded higher values compared to controls. SEM and TEM imaging confirmed initial aggregation and fusion of monocytes on the scaffold's surface, but BIO addition appeared to result in smoother cell surfaces indicating a change in morphology. Late-stage differentiation assessment and co-culture work in the scaffold are ongoing, but initial results show promise in the material's ability to support multilineage differentiation. Acknowledgements: The authors would like to acknowledge the financial support of the Collaborative Health Research Program (CHRP) through CIHR and NSERC, as well as Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, and the FRQ-S


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 29 - 29
1 Nov 2021
Micheletti C Shah FA Grandfield K Palmquist A
Full Access

Introduction and Objective. Type 2 diabetes mellitus (T2DM), and the often concurrent obesity, causes metabolic changes that affect many organs and tissues, including bone. Despite a normal or even higher bone mineral density (BMD), T2DM has often been associated with a higher fracture risk, indicating a compromised bone quality. In this work, we use a novel congenic leptin receptor-deficient BioBreeding Diabetes Resistant rat (BBDR.cg.lepr.cp) to investigate the impact of T2DM and obesity on bone morphology and architecture at the microscale. Materials and Methods. Two different anatomical locations, i.e., femur and cranium, were studied combining micro-computed X-ray tomography (micro-CT) with scanning electron microscopy (SEM). Micro-CT data were examined using advanced image analysis tools in three-dimensions (3D). Results. Both parietal bones and femurs were smaller, i.e., thinner and shorter, respectively, in diabetic animals compared to healthy controls. Image analysis of the sagittal suture revealed a reduced suture width and length in diabetic animals, suggesting an altered bone apposition rate. Histomorphometry analysis from micro-CT data highlighted differences in microstructure of both trabecular and cortical femur between diabetic and healthy rats. In particular, bone volume fraction (BV/TV) was lower in the T2DM group, while trabecular spacing (Tb.Sp) was increased, overall indicating a higher porosity in diabetic trabecular bone. SEM revealed the presence of extended portions of hyper-mineralized cartilage in the distal femur of the diabetic animals. Conclusions. Micro-CT analyses, combined with SEM imaging, suggest that T2DM impacts bone growth and remodelling, in turn leading to differences in the structural organization at the microscale


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 78 - 78
1 May 2012
Morris RG Lawson SEM
Full Access

Osteoarthritis is a joint condition affecting an estimated eight million people in the UK. The kinematics of walking and the impact experienced are thought to play an important role in the initiation and progression of the disease. Previous studies have looked the effect of osteoarthritis on the kinematics of walking in a laboratory environment. This work is part of the Newcastle Thousand Families Study which has followed a cohort of 1142 members since birth in 1947. Optoelectronic gait analysis methods are unsuitable for this environment, so inertial measurement units are being used. This study focuses on the validation of a protocol using inertial sensors to assess gait in the clinical environment. The sensors measure orientation in three dimensions. Our hypothesis was that an attachment position that minimises the movement of the sensor relative to the segment during gait was more important than the proximity of the sensor to anatomical landmarks. The effect of sampling rate, fatty tissue movement and material type were also tested Seven sensors (Xsens, Netherlands) were attached to participants on top of the foot, on the tibial plateau, on the lateral surface of the femur 10cm proximal to the lateral epicondyle, and over the sacrum. Attachment is by Velcro straps over the top of clothing for the waist, thigh and shank sensors, and with double-sided hypoallergenic tape on the foot. Four calibration movements are performed followed by a walking trial of ten paces down a corridor at a self-selected speed. Data is recorded wirelessly at a sampling rate of 50Hz. The calibration movements and trials are repeated twice and the time taken is 20 minutes. Measurement of the joint angles in the sagittal plane was used to assess the effect of changing the sensor position, simulating fatty tissue movement, and variation of material type underneath the sensor. The foot and thigh sensors were displaced in the distal direction by up to 10cm, the shank and waist sensors were displaced in the proximal direction by 5cm. Material types of different elasticity were tested. Fatty tissue movement beneath the straps was simulated using hydration gel packs. Each attachment scenario was repeated five times on a single subject. A “normal” attachment scenario was used to establish a baseline for repeatability of hip, knee and ankle angle measurement (mean±standard deviation of 49±1.28°, 61.5±1.28° and 33.5±0.69° respectively). Repeatability is comparable to that reported for an opto-electronic system (45±1.8°, 63±1.9° and 36±1.5°). Displacement of the foot, shank and waist sensors had no effect on the repeatability. Displacement of the thigh sensor decreased the repeatability for the knee and hip joint angles (52±3.22° and 62.5±2.91°). As the thigh sensor moved closer to the knee the movement artefact experienced increased. Altering sampling rate and simulated fatty tissue did not decrease repeatability. Of the materials tested, denim had the greatest affect, decreasing hip and knee angle repeatability (50.0±2.04° and 61.0±1.75°). A sensor attachment position that minimises sensor movement relative to the segment has been shown to produce the greatest repeatability, irrespective of their proximity to bony landmarks. This is particularly true for the femur sensor.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 64 - 64
11 Apr 2023
Steijvers E Xia Z Deganello D
Full Access

Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity. HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product. It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule. Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation


Objective. To study the effect of hyaluronic acid (HA) on local anaesthetic chondrotoxicity in vitro. Methods. Chondrocytes were harvested from bovine femoral condyle cartilage and isolated using collagenase-containing media. At 24 hours after seeding 15 000 cells per well onto a 96-well plate, chondrocytes were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS, 1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0. 5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups had conditions removed and 24-hour incubation. Cell viability was assessed using PrestoBlue and confirmed visually using fluorescence microscopy. Results. Media-treated groups had a mean of 1.55×10. 4. cells/well (. sem. 783). All treated cells showed statistically significant reduced viability when compared with media alone (all p < 0.003). Cells treated with bupivacaine + HA (6.70×10. 3. cells/well (. sem. 1.10×10. 3. )) survived significantly more than bupivacaine (2.44×10. 3. cells/well (. sem . 830)) (p < 0.001). Lidocaine + HA (1.45×10. 3. cells/well (. sem. 596)) was not significantly more cytotoxic than lidocaine (2.24×10. 3. cells/well (. sem. 341)) (p = 0.999). There was no statistical difference between the chondrotoxicities of PBS (8.49×10. 3. cells/well (. sem. 730) cells/well) and HA (4.75×10. 3. cells/well (. sem. 886)) (p = 0.294). Conclusions. HA co-administration reduced anaesthetic cytotoxicity with bupivacaine but not lidocaine, suggesting different mechanisms of injury between the two. Co-administered intra-articular injections of HA with bupivacaine, but not lidocaine, may protect articular chondrocytes from local anaesthetic-associated death. Cite this article: Bone Joint Res 2013;2:270–5


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 16 - 16
2 Jan 2024
Aydin M Luciani T Mohamed-Ahmed S Yassin M Mustafa K Rashad A
Full Access

The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and toughness but less strength and stiffness under the tension in HT whereas they showed decrease in all mechanical properties in LT. All scaffolds showed excellent cytocompatibility. Cells were able to attach on the surface of the scaffolds and grow up to 14 days. Microscopy images of the seeded scaffolds showed substantial increase in the formation of extracellular matrix (ECM) network and elongation of the cells. The study demonstrated the ability of combining 3D printing and particulate leaching together to fabricate porous PCL scaffolds. The scaffolds were successfully printed with various salt content without negatively affecting cell responses. Printing porous thermoplastic polymer could be of great importance for temporary biocompatible implants in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 16 - 16
11 Apr 2023
Buchholz A Łapaj Ł Herbster M Gehring J Bertrand J Lohmann C Döring J
Full Access

In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40 Biolox delta ceramic retrievals with CoC and CoPE bearings were analysed. A classification of damage type and severity for each component (n=40) was done according to an established scoring system. To investigate the physical properties, the surface quality was measured using confocal microscopy, quantitative analysis of phase composition were performed by Raman spectroscopy and qualitative analysis of metal traces was done by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The periprosthetic tissue was analysed for abrasion particles with SEM and EDX. Both bearing types show different damage patterns. Dotted/ drizzled metal smears were identified in 82 % of CoC (n=16) and 96 % of CoPE (n=24) bearings. Most traces on the ceramic heads were identified in the proximal area while they were observed predominantly in the distal area for the ceramic inlays. The identified marks are similar to those of metallic bearings. Metallic smears lead to an increase of up to 30 % in the monoclinic crystalline phase of the ceramic. The roughness increases by up to six times to Ra=48 nm. Ceramic and metallic wear particles from the articulating surfaces or head neck taper junctions were found in the periprosthetic tissue. Damage patterns on CoC hip implants seem to be similar to those of metallic implants. More detailed analysis of CoC implants are needed to understand the described damage patterns and provide advice for prevention


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods. MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging. The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription. Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic. Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO. 2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology. More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones. Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 137 - 137
2 Jan 2024
Tavernaraki N Platania V Chatzinikolaidou M
Full Access

Bone is a dynamic tissue that undergoes continuous mechanical forces. Mechanical stimuli applied on scaffolds resembling a part of the human bone tissue affects the osteogenesis [1]. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a piezoelectric material that responds to mechanical stimulation producing an electrical signal, which in turn promotes the osteogenic differentiation of bone-forming cells by opening voltage-gated calcium channels [2]. In this study we examined the biological behavior of pre-osteoblastic cells seeded onto lyophilized piezoelectric PEDOT-containing scaffolds applying uniaxial compression. Two different concentrations of PEDOT (0.10 and 0.15% w/v) were combined with a 5% w/v poly(vinyl alcohol) (PVA) and 5% w/v gelatin, casted into wells, freeze dried and crosslinked with 2% v/v (3-glycidyloxypropyl)trimethoxysilane and 0.025% w/v glutaraldehyde. The scaffolds were physicochemically characterized by FTIR, measurement of the elastic modulus, swelling ratio and degradation rate. The cell-loaded scaffolds were subjected to uniaxial compression with a frequency of 1 Hz and a strain of 10% for 1 h every second day for 21 days. The loading parameters were selected to resemble the in vivo loading situation [3]. Cell viability and morphology on the PEDOT/PVA/gelatin scaffolds was determined. The alkaline phosphatase (ALP) activity, the collagen and calcium production were determined. The elastic modulus of PEDOT/PVA/gelatin scaffolds ranged between 1 and 5 MPa. The degradation rate indicates a mass loss of 15% after 21 days. The cell viability assessment displays excellent biocompatibility, while SEM images display well-spread cells. The ALP activity at days 3, 7 and 18 as well as the calcium production are higher in the dynamic culture compared to the static one. Moreover, energy dispersive spectroscopy analysis revealed the presence of calcium phosphate in the extracellular matrix after 14 days. The results demonstrate that PEDOT/PVA/gelatin scaffolds promote the adhesion, proliferation, and osteogenic differentiation of pre-osteoblastic cells under mechanical stimulation, thus favoring bone regeneration


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 2 - 2
1 Dec 2022
Pitton M Pellegatta D Vandoni D Graziani G Farè S
Full Access

The in vitro mimicking of bone microenvironment for the study of pathologies is a challenging field that requires the design of scaffolds with suitable morphological, structural and cytocompatible properties. During last years, 3D in vitro tumour models have been developed to reproduce mechanical, biochemical and structural bone microenvironment elements, allowing cells to behave as in vivo. In this work, gas foamed polyether urethane foams (PUF) and 3D printed thermoplastic polyether urethane (3DP-PU) designed with different patterns are proposed as scaffolds for in vitro model of bone tissue. Surface coatings for a biomimetic behaviour of the 3D scaffold models were also investigated. Morphological, chemico-physical, mechanical properties, and biological in vitro behaviour were investigated. PUFs for metastases investigation. The suitability of PUF as 3D in vitro model to study the interactions between bone tumour initiating cells and the bone microenvironment was investigated. PUF open porosity (>70%) appeared suitable to mimic trabecular bone structure. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as confirmed by Alizarin Red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with bone derived tumour-initiating cells (MCFS). Tumour aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumour cells. 3DP-PU as tumour bone model. 3D printed scaffolds have pores with a precise and regular geometry (0°-90°, 0°-45°-90°-135°, 0°-60°-120°). PU scaffold porosity evidenced values from 55 to 67%, values that belong to the porosity range of the trabecular bone tissue (30-90%). The compressive modulus varied between 2 and 4 MPa, depending on the printed pattern. Biomimetic nanostructured coating was performed on 0-90° 3DP-PU by Ionized Jet Deposition. Coatings had a submicrometric thickness, variable tuning deposition time, nanostructured surface morphology and biomimetic composition. Coating on 3DP-PU promoted cells colonization of the whole porous scaffolds, compared to the controls, where cells concentrated mostly on the outer layers. In conclusion, based on the obtained results, scaffolds with different geometries have been successfully produced. Morphological and structural properties of the scaffolds here presented are suitable for mimicking the bone tissue, in order to produce a 3D in vitro model useful for bone pathologies research


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 96 - 96
14 Nov 2024
Mahadeshwara MR Pandit H Hall RM Jawad MA Bryant M Gendy RE
Full Access

Introduction. Osteoarthritis (OA) occurs due to a multi-scale degradation of articular cartilage (AC) surface which aggravates the disease condition. Investigating the micro-scale structural alterations and mechano-tribological properties facilitates comprehension of disease-mechanisms to improve future injectable-therapies. This study aims to analyze these properties using various experimental and analytical methods to establish correlations between their morpho-physiological features. Method. In this study, Raman-spectroscopy was used to investigate microscale changes in AC constituents and categorize OA damage regions in knee-joint samples from joint replacement patients (Samples = 5 and Regions = 40). Following, microscale indentation and sliding tests were performed on these regions to evaluate variations in aggregate-modulus (AM) and elastic-modulus (EM), with coefficient of friction (COF). Finally, scanning electron microscopy (SEM) was employed to analyze these morphological variations. Result. Raman spectroscopy revealed degree of collagen-damage (Amide-3 α-helix to random-coil ratio I-1250/I-1280), proteoglycan-damage (Sulphated bonds SO. 3-. to CH. 2. twist ratio I-1065/I-1206), amount of bone exposure (Phosphated-hydroxyapatite PO. 4. 3-. to Amide-1 ratio I-959/I-1669) and increased crystallinity (Carbonated hydroxyapatite CO. 3. 2-. to Amide-1 ratio I-1075/I-959) in ECM. Subsequently, these regions were categorized into different groups (G) based on these damages; G1 (Proteoglycan); G2 (Collagen + Proteoglycan); G3 (Collagen + Proteoglycan + Carbonated crystallinity) G4 (Collagen or Proteoglycan + bone exposure); and G5 (Collagen + Proteoglycan + Bone exposure). Further experimentation revealed the differences in mechano-tribological properties (AM, EM, and COF) between the different groups. G5 displayed the highest values of AM (1.5 ± 0.2MPa), EM (0.3 ± 0.01MPa) and COF (0.39 ± 0.08), compared to other groups. These altered properties were confirmed via SEM that revealed micro-asperity junctions, superficial fronding, fibrillations and bone exposure at these damaged regions. Conclusion. This study demonstrated micro-scale changes in AC among OA patients commensurate to the degree of tissue damage, which correlates with disease progression altering joint structure and function particularly in regions with high COF


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 21 - 21
1 Dec 2022
Montesissa M Farè S Draghi L Rau J Gualandi C Focarete M Boi M Baldini N Graziani G
Full Access

Favoring osseointegration and avoiding bacterial contamination are the key challenges in the design of implantable devices for orthopedic applications. To meet these goals, a promising route is to tune the biointerface of the devices, that can regulate interactions with the host cells and bacteria, by using nanostructured antibacterial and bioactive coatings. Indeed, the selection of adequate metal-based coatings permits to discourage infection while avoiding the development of bacterial resistance and nanostructuring permits to tune the release of the antimicrobial compounds, allowing high efficacy and decreasing possible cytotoxic effects. In addition, metal-doped calcium phosphates-based nanostructured coatings permit to tune both composition and morphology of the biointerfaces, allowing to regulate host cells and bacteria response. To tune the biointerfaces of implantable devices, nanostructured coatings can be used, but their use is challenging when the substrate is heat-sensitive and/or porous. Here, we propose the use of Ionized Jet Deposition (IJD) to deposit metallic and ion-doped calcium phosphates materials onto different polymeric substrates, without heating and damaging the substrate morphology. 3D printed scaffolds in polylactic acid (PLA) and polyurethane (PU), and electrospun matrices in polycaprolactone (PCL) and PLA were used as substrates. Biogenic apatite (HA), ion doped (zinc, copper and iron) tricalcium phosphate (TCP) and silver (Ag) coatings were obtained on porous and custom-made polymeric substrates. Chemical analyses confirmed that coatings composition matches that of the target materials, both in terms of main phase (HA or TCP) and ion doping (presence of Cu, Zn or Fe ion). Deposition parameters, and especially its duration time, influence the coating features (morphology and thickness) and substrate damage. Indeed, SEM/EDS observations show the presence of nanostructured agglomerates on substrates surface. The dimensions of the aggregates and the thickness of the coating films increase increasing the deposition time, without affecting the substrate morphology (no porosity alteration or fibers damaging). The possible substrate damage is influenced by target and substrate material, but it can be avoided modulating deposition time. Once the parameters are optimized, the models show suitable in vitro biological efficacy for applications in bone models, regenerative medicine and infection. Indeed, HA-based coatings favor cells adhesion on printed and electrospun fibers. For antibacterial applications, the ion doped TCP coatings can reduce the bacterial growth and adhesion (E.coli and S.aureus) on electrospun matrices. To conclude, it is possible achieve different properties applying nanostructured coatings with IJD technique on polymeric substrates, modulating deposition conditions to avoid substrate damage


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 133 - 133
2 Jan 2024
Graziani G
Full Access

Decreasing the chance of local relapse or infection after surgical excision of bone metastases is a main goals in orthopedic oncology. Indeed, bone metastases have high incidence rate (up to 75%) and important cross-relations with infection and bone regeneration. Even in patients with advanced cancer, bone gaps resulting from tumor excision must be filled with bone substitutes. Functionalization of these substitutes with antitumor and antibacterial compounds could constitute a promising approach to overcome infection and tumor at one same time. Here, for the first time, we propose the use of nanostructured zinc-bone apatite coatings having antitumor and antimicrobial efficacy. The coatings are obtained by Ionized Jet Deposition from composite targets of zinc and bovine-derived bone apatite. Antibacterial and antibiofilm efficacy of the coatings is demonstrated in vitro against S. Aureus and E. Coli. Anti-tumor efficacy is investigated against MDA- MB-231 cells and biocompatibility is assessed on L929 and MSCs. A microfluidic based approach is used to select the optimal concentration of zinc to be used to obtain antitumor efficacy and avoid cytotoxicity, exploiting a custom gradient generator microfluidic device, specifically designed for the experiments. Then, coatings capable of releasing the desired amount of active compounds are manufactured. Films morphology, composition and ion-release are studies by FEG- SEM/EDS, XRD and ICP. Efficacy and biocompatibility of the coatings are verified by investigating MDA, MSCs and L929 viability and morphology by Alamar Blue, Live/Dead Assay and FEG-SEM at different timepoints. Statistical analysis is performed by SPSS/PC + Statistics TM 25.0 software, one-way ANOVA and post-hoc Sheffe? test. Data are reported as Mean ± standard Deviation at a significance level of p <0.05. Results and Discussion. Coatings have a nanostructured surface morphology and a composition mimicking the target. They permit sustained zinc release for over 14 days in medium. Thanks to these characteristics, they show high antibacterial ability (inhibition of bacteria viability and adhesion to substrate) against both the gram + and gram – strain. The gradient generator microfluidic device permits a fine selection of the concentration of zinc to be used, with many potential perspectives for the design of biomaterials. For the first time, we show that zinc and zinc-based coatings have a selective efficacy against MDA cells. Upon mixing with bone apatite, the efficacy is maintained and cytotoxicity is avoided. For the first time, new antibacterial metal-based films are proposed for addressing bone metastases and infection at one same time. At the same time, a new approach is proposed for the design of the coatings, based on a microfluidic approach. We demonstrated the efficacy of Zn against the MDA-MB-231 cells, characterized for their ability to form bone metastases in vivo, and the possibility to use nanostructured metallic coatings against bone tumors. At the same time, we show that the gradient-generator approach is promising for the design of antitumor biomaterials. Efficacy of Zn films must be verified in vivo, but the dual-efficacy coatings appear promising for orthopedic applications


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 66 - 66
1 Mar 2021
Pugliese E Zeugolis D
Full Access

The enthesis is a specialised zonal tissue interface between tendon and bone, essential for adequate force transmission and composed by four distinct zones, namely tendon, fibrocartilage, mineralized fibrocartilage and bone. Following injuries and surgical repair, the enthesis is often not reestablished and so far, traditionally used tissue substitutes have lacked to reproduce the complexity of the native tissue. In this work, we hypothesised that a collagen-based three-layer scaffold that mimic the composition of the enthesis, in combination with bioactive molecules, will enhance the functional regeneration of the enthesis. A three-layer sponge composed of a tendon-like layer (collagen I), a cartilage-like layer (collagen II) and a bone-like layer (collagen I and hydroxyapatite) was fabricated by an iterative layering freeze-drying technique. Scaffold porosity and structural continuity at the interfaces were assessed through SEM analysis. Bone-marrow derived stem cells (BMSCs) were seeded by syringe vacuum assisted technique on the scaffold. Scaffolds were cultured in basal media for 3 days before switching to differentiation media (chondrogenic, tenogenic and osteogenic). BMSCs metabolic activity, proliferation and viability were assessed by alamarBlue, PicoGreen and Live/Dead assays. At D21 the scaffolds were fixed, cryosectioned and Alizarin Red and Alcian Blue stainings were performed in order to evaluate BMSC differentiation towards osteogenic and chondrogenic lineage. The presence of collagen I and tenascin in the scaffolds was evaluated by immunofluorescence staining at D21 in order to assess tenogenic differentiation of BMSCs. Subsequently, the cartilage-like layer was functionalized with IGF-1, seeded with BMSCs and cultured in basal media up to D21. Structural continuity at the interfaces of the scaffolds was confirmed by SEM and scaffold porosity was assessed as >98%. The scaffolds supported cell proliferation and infiltration homogeneously throughout all the layers up to D21. Osteogenic differentiation of BMSC selectively in the bone-like layer was confirmed by Alizarin red staining in scaffolds cultured in basal and osteogenic media. Alcian blue staining revealed the presence of proteoglycans selectively in the cartilage-like layer in scaffolds cultured in chondrogenic media but not in basal media. Increased expression of the tenogenic markers collagen I and tenascin were observed in the tendon-like layer of scaffolds cultured in tenogenic but not in basal media for 21 days. The presence of IGF-1 increased osteogenic and chondrogenic differentiation of BMSCs, whereas no difference was observed for tenogenic differentiation. In conclusion, a 3-layer collagen sponge was successfully fabricated with distinct but integrated layers; the different collagen composition of the non-functionalized 3-layer sponge was able to regulate BMSC differentiation in a localized manner within the scaffold. The scaffold functionalization with IGF-1 accelerated chondrogenic and osteogenic BMSC differentiation. Overall, functionalization of the 3-layer scaffolds holds promising potential in enthesis regeneration


Although remnant-preserved ACL reconstruction (ACLR) restores knee joint stability and dampens the problem of acute ACL rupture-induced knee pain, an increasing number of patients still develop post-traumatic osteoarthritis (PTOA) after 10 to 15 years of ACLR. We previously found that remnant-preserved ACLR with concomitant medial and lateral meniscus repair may not prevent cartilage degeneration and weaken muscle strength, while the clinical features of PTOA are not clear. We hypothesized that remnant-preserved ACLR with concomitant medial and lateral meniscus tears is related to early cartilage damage, worse function recovery, patient-reported outcomes (PROs) and delayed duration to return to sports. The aim is to evaluate the remnant-preserved ACLR with complicated meniscal injuries in predicting which patients are at higher risk of osteoarthritic changes, worse function and limited activities after ACLR for 12 months. Human ethical issue was approved by a committee from Xi'an Jiaotong University. 26 young and active patients (24 male, 2 female) with ACL injuries (Sherman type I and II) with concomitant medial and lateral meniscus within 2 months were included from January 2014 to March 2022. The average age of the ACLR+ meniscus repair was 26.77±1.52 (8 right, 5 left) and isolated ACLR control was 31.92±2.61 years old (7 left, 6 right). Remnant-preserved ACLR with a 5- to 6-strand hamstring tendon graft was operated on by the same sports medicine specialists. MRI CUBE-T. 2. scanning with 48 channels was conducted by a professional radiologist. The volume of the ACL graft was created through 3 dimensional MRI model (Mimics 19, Ann Arbor). Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS) was applied to score visible cartilage damage. IKDC 2000 score and VAS were assessed by two blinded researchers. Results were presented as mean± SEM of each group. The cross-sectional area and 3D volume of the ACL graft were greater in the remnant-preserved ACLR+meniscus group compared with isolated ACLR (p=0.01). It showed that ACLR+ meniscus group had early signs of joint damage and delayed meniscus healing regarding ACLOAS compared to control group (p=0.045). MRI CUBE-T. 2. prediction of radiographic cartilage degeneration was not obvious in both groups post remnant-preserved ACLR over 12 months (p>0.05). However, higher VAS scores, lower IKDC scores, and long-last joint swelling were reported in the ACLR+ meniscus repair group at the end of 12 months follow-up. Although remnant-preserved ACLR+ meniscus was able to maintain the restore the knee function, it showed delayed timing (>12 months) to return to play at the pre-injury stage, while no difference between the timing of returning to the normal daily routine of their ACLR knee compared to control (p=0.30). The cost of ACLR+ meniscus (average 10,520.76$) was higher than the control group (6,452.92$, p=0.018). Remnants-preserved ACLR with concomitant injured medial and lateral meniscus repair shows a higher risk of cartilage damage, greater cost, worse functional performance, and longer time for young male patients to return to sports after 12-month follow-up compared to isolated ACLR. Further evidence and long-term follow-up are needed to better understand the association between these results and the risk of development of PTOA in this patient cohort


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 23 - 23
1 Dec 2021
Boyd A Rodzen K Morton M Acheson J McIlhagger A Morgan R Tormey D Dave F Sherlock R Meenan B
Full Access

Abstract. INTRODUCTION. Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedic implant devices and has a lot of promise for ‘made-to-measure’ implants produced through additive manufacturing [1]. However, a key limitation of PEEK is that it is bioinert and there is a requirement to functionalise its surface to make the material osteoconductive to ensure a more rapid, improved and stable fixation, in vivo. One approach to solving this issue is to modify PEEK with bioactive materials, such as hydroxyapatite (HA). OBJECTIVE. To 3D PEEK/HA composite materials using a Fused Filament Fabrication (FFF) approach to enhance the properties of the PEEK matrix. METHODS. PEEK/HA composites (0–30% w/w HA/PEEK) were 3D printed using a modified Ultimaker 2+ 3D printer. The mechanical, thermal, physical, chemical and in vitro properties of the 3D printed samples were all studied as part of this work. RESULTS. The CT images of both the filament and the 3D printed samples showed that the HA material was evenly dispersed throughout the bulk all the samples. SEM/EDX measurements highlighted that HA was homogenously distributed across the surface. As the HA content of the samples increases, so does the tensile modulus, ranging from 4.2 GPa (PEEK) to 6.1 GPa (30% HA/PEEK) and are significantly higher than datasheet information of injected molded PEEK samples. All materials supported the growth of osteoblast cells on their surface. CONCLUSIONS. The results clearly show that we can successfully and easily 3D print HA/PEEK composite materials up to 30% w/w HA/PEEK. The samples produced have a homogeneous distribution of HA in both the bulk and surface of all the samples, and their mechanical performance of the PEEK is enhanced by the addition of HA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 47 - 47
1 Nov 2018
Hofmann S
Full Access

Bone tissue engineering has the intent to grow bone copies in the laboratory that could be used either for bone regeneration or as model systems to study bone physiology and pathology. Bone marrow- or adipose derived derived mesenchymal stromal cells are commonly used as they have been shown to be capable to differentiate into osteoblasts and depositing a calcium phosphate rich extracellular matrix. However, real bone is more than that: there are commonly three cell types described that are essential contributors to the tissue's native function: osteoblasts, osteocytes and osteoclasts. While all three cell types are being investigated separately, co-cultures of them including their precursors and inactive forms still provide a huge challenge these days, both in terms of culturing and (quantitative) evaluation. In addition, the matrix deposited by the osteoblasts in vitro is still far from bone's hierarchical organization in vivo that contributes to bone's impressive mechanical properties. Using a large set of microscopic tools (micro-computed tomography, SEM, 3D FIB/SEM, TEM and fluorescence), combined with spectroscopic (FTIR) and molecular tools (qPCR) we show that our 3D model system develops the main features of bone by human stromal cells differentiating first into osteoblasts who further embed themselves to become osteocytes. In their right environment and when stimulated mechanically, the cells are embedded within a collagenous matrix which is mineralized with carbonated hydroxyapatite. While this system still needs the addition of osteoclasts to represent ‘real’ bone, it allows to study the interaction between osteoblasts and osteocytes and to invest parameters contributing to collagen mineralization in high resolution and cryogenic conditions