Abstract
Introduction and Objective
Type 2 diabetes mellitus (T2DM), and the often concurrent obesity, causes metabolic changes that affect many organs and tissues, including bone. Despite a normal or even higher bone mineral density (BMD), T2DM has often been associated with a higher fracture risk, indicating a compromised bone quality. In this work, we use a novel congenic leptin receptor-deficient BioBreeding Diabetes Resistant rat (BBDR.cg.lepr.cp) to investigate the impact of T2DM and obesity on bone morphology and architecture at the microscale.
Materials and Methods
Two different anatomical locations, i.e., femur and cranium, were studied combining micro-computed X-ray tomography (micro-CT) with scanning electron microscopy (SEM). Micro-CT data were examined using advanced image analysis tools in three-dimensions (3D).
Results
Both parietal bones and femurs were smaller, i.e., thinner and shorter, respectively, in diabetic animals compared to healthy controls. Image analysis of the sagittal suture revealed a reduced suture width and length in diabetic animals, suggesting an altered bone apposition rate. Histomorphometry analysis from micro-CT data highlighted differences in microstructure of both trabecular and cortical femur between diabetic and healthy rats. In particular, bone volume fraction (BV/TV) was lower in the T2DM group, while trabecular spacing (Tb.Sp) was increased, overall indicating a higher porosity in diabetic trabecular bone. SEM revealed the presence of extended portions of hyper-mineralized cartilage in the distal femur of the diabetic animals.
Conclusions
Micro-CT analyses, combined with SEM imaging, suggest that T2DM impacts bone growth and remodelling, in turn leading to differences in the structural organization at the microscale.