Advertisement for orthosearch.org.uk
Results 1 - 20 of 62
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 15 - 15
14 Nov 2024
Heumann M Feng C Benneker L Spruit M Mazel C Buschbaum J Gueorguiev B Ernst M
Full Access

Introduction. In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion. Method. A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode. Result. The ROM decreased in the simulated bone fusion state in all loading directions (p≤0.002). In both states, the measured strain on the posterior instrumentation was highest during LB motion. Furthermore, the sensors detected a significant decrease in the load induced rod strain (p≤0.002) between TLIF+PSR and simulated bone fusion state in LB. Conclusion. Implant load measured via rod strain sensors can be used to monitor the progression of fusion after a TLIF procedure when measured during LB of the lumbar spine. However, further research is needed to investigate the influence of daily loading scenarios expected in-vivo on the overall change in implant load


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 93 - 93
1 May 2012
Bhushan P Varghese M Gupta R
Full Access

Flexion Deformity of knee is the most common deformity in post polio residual deformity. Wilson's release, supracondylar osteotomy etc have been described for its treatment. We present our result of fractional hamstring lengthening followed by gradual distraction using threaded rod in hollow tube to treat flexion deformity of knee. This retrospective study included 150 cases (80 males and 70 females) with the mean of 15 years (8-22yrs). The mean duration of deformity was 6 years (2 – 14yrs) with mean follow up 0f 3 years. The mean preoperative flexion deformity was 45degree (110 – 30 degree) with a mean pre operative further flexion of 110 degree (130 – 90) .20 cases were had a crawling gait and 10 cases were wheel chair bound. Flexion got corrected to 0 degree in 110 cases (P value <0.01). Post operative mean arc of motion was 80degree We had 10 cases who could not tolerate plaster and hence were put on traction . 20 cases had knee stiffness on removal of plaster which could not improve on physiotherapy. 10 cases had superficial infection cured with dressings. Our findings indicate that this method is very effective in the treatment of flexion deformity of knee with complication of knee stiffness in older cases


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 28 - 28
14 Nov 2024
Heumann M Jacob A Gueorguiev B Richards G Benneker L
Full Access

Introduction. Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured vertebra during healing with a pedicle-screw-rod constructs. As healing is taking place the load shifts from the implant back to the spine. Monitoring the load-induced deflection of the rods over time would allow quantifiable postoperative assessment of healing progress without the need for radiation exposure or frequent hospital visits. This approach, previously demonstrated to be effective in assessing fracture healing in long bones and monitoring posterolateral spinal fusion in sheep, is now being investigated for its potential in evaluating lumbar vertebra transosseous fracture healing. Method. Six human cadaveric spines were instrumented with pedicle-screws and rods spanning L3 vertebra. The spine was loaded in Flexion-Extension (FE), Lateral-Bending (LB) and Axial-Rotation (AR) with an intact L3 vertebra (representing a healed vertebra) and after transosseous disruption, creating an AO type B1 fracture. The implant load on the rod was measured using an implantable strain sensor (Monitor) on one rod and on the contralateral rod by a strain gauge to validate the Monitor's measurements. In parallel the range of motion (ROM) was assessed. Result. The ROM increased significantly in all directions in the fractured model (p≤0.049). The Monitor measured a significant increase in implant load in FE (p=0.002) and LB (p=0.045), however, not in AR. The strain gauge detected an increased implant load not only in FE (p=0.001) and LB (p=0.016), but also in AR (p=0.047). The highest strain signal was found during LB for both, the Monitor, and the strain gauge. Conclusion. After a complete transosseous disruption of L3 vertebra the load on the implants was significantly higher than in the intact respectively healed state. Innovative implantable sensors could be used to monitor those changes allowing the assessment of healing progression based on quantifiable data rather than CT-imaging


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 55 - 55
1 Dec 2021
Phillips A
Full Access

Abstract. Several experimental studies derived relationships between density and macroscale material properties of trabecular bone, taking the form E=αρ. β. , where E is Young's modulus, ρ is density, and α and β are constants. Classical structural mechanics demonstrates β can vary between 1 (behaviour of the trabecular lattice is dominated by the axial stiffness of individual trabeculae) and 3 (behaviour is dominated by the bending stiffness of individual trabeculae). The ratio between rods (round trabeculae characterised by radius) and plates (flat trabeculae characterised by thickness) is also believed to govern the macroscale material properties of trabecular bone. To assess feasible ranges of α and β for trabecular bone, and their dependence on rod to plate ratio, 25 virtual samples of trabecular bone were generated as Voronoi lattices. Each 8×8×8mm sample was composed of 320 randomly generated Voronoi cells forming a foam like structure. Edges formed the rod network. Faces formed the plate network. Tissue level Young's modulus was set to 18,000MPa. Relative density was varied: 0.05, 0.1, 0.15, 0.2, 0.25. Rod to plate ratio was varied: 100:0, 75:25, 50:50, 25:75, 0:100. Macroscale Young's modulus was averaged in three orthotropic directions and used to find α and β. Around 14,000 3-noded quadratic beam elements represented rods, with average length of 0.63mm, and around 42,000 8-noded quadratic shell elements represented plates, with average area of 0.10mm. 2. Results for α and β were 3274 and 1.463 for 100% rods, 3646 and 1.067 for 50:50 rods and plates, and 4981 and 1.062 for 100% plates, showing the presence of plates improves the stiffness characteristics of trabecular bone. Work investigating the impact of element based geometry optimisation is ongoing. The work has important implications for the onset of conditions including osteoporosis and osteoarthritis, as well as those designing 3D printed scaffolds and implants


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 17 - 17
17 Nov 2023
Naeem H Maroy R Lineham B Stewart T Harwood P Howard A
Full Access

Abstract. OBJECTIVES. To determine if force measured using a strain gauge in circular external fixation frames is different for 1) different simulated stages of bone healing, and for 2) fractures clinically deemed either united or un-united. METHODS. In a laboratory study, 3 similar Ilizarov frame constructs were assembled using a Perspex bone analogue. Constructs were tested in 10 different clinical situations simulating different stages of bone healing including with the bone analogue intact, with 1,3 and 50mm gaps, and with 6 materials of varying stiffness's within the 50mm gap. A Bluetooth strain gauge was inserted across the simulated fracture focus, replacing one of the 4 threaded rods used to construct the frame. Constructs were loaded to 700N using an Instron testing machine and maximum force during loading was measured by the strain gauge. Testing was repeated with the strain gauge replacing each of the 4 threaded rods in turn, with measurements being repeated 3 times, across all 3 frame constructs for all 10 simulated clinical situations (n=360). Force measurements between the situations were compared using a Kruskal-Wallis test (KW) and a post-hoc Steel test was used for multiple comparison against control (intact bone model). Additionally, a pilot study has been initiated to assess clinical efficacy of the strain gauge measurement in patients with circular frames. The strain gauge replaced the anterior rod across the fracture focus for each patient. Patients were asked to step on a weighing scale with their affected limb, and maximum weight transfer through the limb and maximal force measured in the frame were recorded. This was repeated 3 times and a mean ratio of force to weight through affected limb was calculated for each patient. The clinical situation at each measurement was designated as united or un-united by one of the senior authors for analysis. Force measurements between the situations were compared using a Wilcoxon-Mann-Whitney test. RESULTS. In the laboratory study, including all constructs with the strain gauge in all positions, a statistically significant relationship between model stability and force measured was identified (KW test for overall relationship p<0.0001). The largest force was measured in the model with a 50mm gap (median 170N, IQR 155–192, range 83–213) and the smallest in the intact bone model (median 3N, IQR 1–8, range 0–11). Multiple comparison testing found a significant difference between intact bone and all the unstable situations (p=0.002 or better). Examining initial results from our pilot clinical study, nine measurements were available in seven patients. Three of these were taken in patients with fractures yet to unite, six in patients where union has since been confirmed clinically. The median force measured was significantly greater where the fracture was not united (median 1.66 N/kg, range 1.07–1.99 vs 0.12 N/kg, range 0.05–0.73, p=0.02). CONCLUSIONS. This laboratory study demonstrates that force measurement may be different at different stages of healing, and although only limited data was available, a pilot clinical study showed a significant relationship between the force measured and clinical union of the patient's fracture. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 81 - 81
1 Mar 2021
Roth AK Willem PC van Rhijn LW Arts JJ Ito K van Rietbergen B
Full Access

Currently, between 17% of patients undergoing surgery for adult spinal deformity experience severe instrumentation related problems such as screw pullout or proximal junctional failure necessitating revision surgery. Cables may be used to reinforce pedicle screw fixation as an additive measure or may provide less rigid fixation at the construct end levels in order to prevent junctional level problems. The purpose of this study is to provide insight into the maximum expected load during flexion in UHMWPE cable in constructs intended for correction of adult spine deformity (degenerative scoliosis) in the PoSTuRe first-in-man clinical trial. Following the concept of toppinoff, a new construct is proposed with screw/cable fixation of rods at the lower levels and standalone UHMWPE cables at the upper level (T11). A parametric FE model of the instrumented thoracolumbar spine, which has been previously validated, was used to represent the construct. Pedicle screws are modeled by assigning a rigid tie constraint between the rod and the lamina of the corresponding spinal level. Cables are modeled using linear elastic line elements, fixing the rod to the lamina medially at the cranial laminar end and laterally at the caudal laminar end. A Youngs modulus was assigned such that the stiffness of the line element was the same as that of the cable. An 8 Nm flexion moment was applied to the cranial endplate. The maximum value of the force in the wire (80 N) is found at the T11 (upper) level. At the other levels, forces in the cable are very small because most of the force is carried by the screw (T12) or because the wires are force shielded by the contralateral and adjacent level pedicle screws (L2, L3). The model provides first estimates of the forces that can be expected in the UHMWPE cables in constructs for kyphosis correction during movement. It is expected that this approach can help in defining the number of wires for optimal treatment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 20 - 20
14 Nov 2024
Einafshar MM Massaad E Kiapour A
Full Access

Introduction. The biomechanical behavior of lumbar spine instrumentation is critical in understanding its efficacy and durability in clinical practice. In this study, we aim to compare the biomechanics of the lumbar spine instrumented with single-level posterior rod and screw systems employing two distinct screw designs: paddle screw versus conventional screw system. Method. A fully cadaveric-validated 3D ligamentous model of the lumbopelvic spine served as the foundation for our comparative biomechanical analysis. 1. To simulate instrumentation, the intact spine was modified at the L4L5 level, employing either paddle screws or standard pedicle screws (SPS). The implants were composed of Ti-6AL-4V. Fixation at the S1 ensured consistency across loading scenarios. Loading conditions included a 400-N compressive load combined with a 10 N.m pure bending moment at the level of L1, replicating physiological motions of flexion-extension, lateral bending and axial rotation. We extracted data across various scenarios, focusing on the segmental range of motion at both implanted and adjacent levels. Result. In the flexion of L4L5, the applied force ranged from -29.2 to 29.3 N in the paddle screw, while it ranged from -25 to 25 N in the PS system. Similarly, the extension of L4L5 ranged from -3.1 to 2.6 N in the paddle and ranged from -4.5 to 3.9 N in the SPS system. In terms of stress distributions on the screw, stress concentrations decreased in several cases in the paddle design compared to the SPS systems. Top of Form. Conclusion. The paddle screw enhanced the range of motion overall in both the upper adjacent segment (L3L4) and the lower adjacent segment (L5S1) compared to the conventional SPS system. The stability of the aimed segment was increased by 33% on average with the paddle screw compared to conventional PS. Increasing the stability of the host segment decreases the possibility of non-union and the rate of fusion failure . 2.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 33 - 33
4 Apr 2023
Pareatumbee P Yew A Koh J Zainul-Abidin S Howe T Tan M
Full Access

To quantify bone-nail fit in response to varying nail placements by entry point translation in straight antegrade humeral nailing using three-dimensional (3D) computational analysis. CT scans of ten cadaveric humeri were processed in 3D Slicer to obtain 3D models of the cortical and cancellous bone. The bone was divided into individual slices each consisting of 2% humeral length (L) with the centroid of each slice determined. To represent straight antegrade humeral nail, a rod consisting of two cylinders with diameters of 9.5mm and 8.5mm and length of 0.22L mm and 0.44L mm respectively joined at one end was modelled. The humeral head apex (surgical entry point) was translated by 1mm in both anterior-posterior and medio-lateral directions to generate eight entry points. Total nail protrusion surface area, maximum nail protrusion distance into cortical shell and top, middle, bottom deviation between nail and intramedullary cavity centre were investigated. Statistical analysis between the apex and translated entry points was conducted using paired t-test. A posterior-lateral translation was considered as the optimal entry point with minimum protrusion in comparison to the anterior-medial translation experiencing twice the level of protrusion. Statistically significant differences in cortical protrusion were found in anterior-medial and posterior-lateral directions producing increased and decreased level of protrusion respectively compared to the apex. The bottom anterior-posterior deviation distance appeared to be a key predictor of cortical breach with the distal nail being more susceptible. Furthermore, nails with anterior translation generated higher anterior-posterior deviation (>4mm) compared to posterior translation (<3mm). Aside from slight posterolateral translation of the entry point from the apex, inclusion of a distal posterior-lateral bend into current straight nail design could improve nail fitting within the curved humeral bone, potentially improving distal working length within the flat and narrow medullary canal of the distal humeral shaft


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 43 - 43
11 Apr 2023
Amirouche F Mok J Leonardo Diaz R Forsthoefel C Hussain A
Full Access

Lateral lumbar interbody fusion (LLIF) has biomechanical advantages due to the preservation of ligamentous structures (ALL/PLL), and optimal cage height afforded by the strength of the apophyseal ring. We compare the biomechanical motion stability of multiple levels LLIF (4 segments) utilising PEEK interbody 26mm cages to stand-alone cage placement and with supplemental posterior fixation with pedicle screw and rods. Six lumbar human cadaver specimens were stripped of the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous structures and potted. Specimens were tested under 5 conditions: intact, posterior bilateral fixation (L1-L5) only, LLIF-only, LLIF with unilateral fixation and LLIF with bilateral fixation. Non-destructive testing was performed on a universal testing machine (MTS Systems Corp) to produce flexion-extension, lateral-bending, and axial rotation using customized jigs and a pulley system to define a non-constraining load follower. Three-dimensional spine motion was recorded using a motion device (Optotrak). Results are reported for the L3-L4 motion segment within the construct to allow comparison with previously published works of shorter constructs (1-2 segments). In all conditions, there was an observed decrease in ROM from intact in flexion/extension (31%-89% decrease), lateral bending (19%-78%), and axial rotation (37%-60%). At flexion/extension, the decreases were statistically significant (p<0.007) except for stand-alone LLIF. LLIF+unilateral had similar decreases in all planes as the LLIF+bilateral condition. The observed ROM within the 4-level construct was similar to previously reported results in 1-2 levels for stand-alone LLIF and LLIF+bilateral. Surgeons may be concerned about the biomechanical stability of an approach utilizing stand-alone multilevel LLIF. Our results show that 4-level multilevel LLIF utilizing 26 mm cages demonstrated ROM comparable to short-segment LLIF. Stand-alone LLIF showed a decrease in ROM from the intact condition. The addition of posterior supplemental fixation resulted in an additional decrease in ROM. The results suggest that unilateral posterior fixation may be sufficient


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 35 - 35
1 Jan 2019
Zaribaf F Gill HR Pegg E
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) is a commonly used as bearing material in joint replacement devices. UHMWPE implants can be hard to see on a standard X-ray because UHMWPE does not readily attenuate X-rays. Radiopaque UHMWPE would enable direct imaging of the bearing both during and after surgery, providing in vivo assessment of bearing position, dislocation or fracture, and potentially a direct measure of wear. The X-ray attenuation of UHMWPE was increased by diffusing an FDA approved contrast agent (Lipiodol) into UHMWPE parts (Zaribaf et al, 2018). The aim of this study was to evaluate the optimal level of radiopacity for a UHMWPE bearing. Samples of un-irradiated medical grade UHMWPE (GUR 1050) were machined into 4mm standard medium Oxford Unicompartmental bearings. Samples were immersed in Lipiodol Ultra Fluid (Guerbert, France) at elevated temperatures (85 °C, 95 °C and 105 °C) for 24 h to achieve three different levels of radiopacity. A phantom set-up was used for X-ray imaging; the phantom contained two perspex rods to represent bone, with the metallic tibial tray and polyethylene bearing fixed to the end of one rod and the metallic femoral component fixed to the other rod. Radiographs of the samples were taken (n=5) with the components positioned in full extension. To ensure consistency, the images of all the samples were taken simultaneously alongside an untreated part. The results of our ongoing study demonstrate that the radiopacity of UHMWPE can be enhanced using Lipiodol and the parts are visible in a clinical radiographs. The identification of the optimal treatment from a clinical perspective is ongoing; we are currently running a survey with clinicians to find the consensus on the optimal radiopacity taking into account the metallic components and alignment. Future work will involve a RSA study to assess the feasibility of measuring wear directly from the bearing


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 132 - 132
1 Nov 2021
Chalak A Singh P Singh S Mehra S Samant PD Shetty S Kale S
Full Access

Introduction and Objective. Management of gap non-union of the tibia, the major weight bearing bone of the leg remains controversial. The different internal fixation techniques are often weighed down by relatively high complication rates that include fractures which fail to heal (non-union). Minimally invasive techniques with ring fixators and bone transport (distraction osteogenesis) have come into picture as an alternative allowing alignment and stabilization, avoiding a graduated approach. This study was focused on fractures that result in a gap non-union of > 6 cm. Ilizarov technique was employed for management of such non-unions in this case series. The Ilizarov apparatus consists of rings, rods and kirschner wires that encloses the limb as a cylinder and uses kirschner wires to create tension allowing early weight bearing and stimulating bone growth. Ilizarov technique works on the principle of distraction osteogenesis, that is, pulling apart of bone to stimulate new bone growth. Usually, 4–5 rings are used in the setup depending on fracture site and pattern for stable fixation. In this study, we demonstrate effective bone transport and formation of gap non-union more than 6 cm in 10 patients using only 3 rings construct Ilizarov apparatus. Materials and Methods. This case study was conducted at Dr. D. Y. Patil Medical Hospital, Navi Mumbai, Maharashtra, India. The study involved 10 patients with a non-union or gap > 6 cm after tibial fracture. 3 rings were used in the setup for the treatment of all the patients. Wires were passed percutaneously through the bone using a drill and the projecting ends of the wires were attached to the metal rings and tensioned to increase stability. The outcome of the study was measured using the Oxford Knee scoring system, Functional Mobility Scale, the American Foot and Ankle Score and Visual Analog Scale. Further, follow up of patients was done upto 2 years. Results. All the patients demonstrated good fixation as was assessed clinically and radiologically. 9 patients had a clinical score of > 65 which implied fair to excellent clinical rating. The patients showed good range of motion and were highly satisfied with the treatment as measured by different scoring parameters. Conclusions. In this case study, we demonstrate that the Ilizarov technique using 3 rings is equally effective in treating non-unions > 6 cm as when using 4–5 rings. Obtaining good clinical outcome and low complication rate in all 10 patients shows that this modified technique can be employed for patients with such difficulties in the future


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 32 - 32
1 Apr 2018
Karakaşlı A Ertem F Kızmazoğlu C Havıtçıoğlu H
Full Access

Background. For dorsal stabilization, rigid implant systems are be coming increasingly complemented by numerous dynamic systems based on pedicle screws. Numerous posterior non-fusion systems have been developed within the past decade to resolve the disadvantages of rigid instrumentations and preserve spinal motion. For dorsal stabilization, rigid implant systems are becoming increasingly complemented by numerous dynamic systems based on pedicle screws and varying direction. However, it is still unclear which direction is most suitable to accomplish a physiologically related dynamic stabilization, and which loadings conditions are induced to the implants. Purpose. The aim of this study was to investigate the effect of a new telescopic dynamic stabilization device. Evaluation of the effects on the dynamic stabilization of the spine in terms of segmental range of motion (RoM), and implant loadings. Methods. Six sheep lumbar spine motion segments (L3–4) were loaded in a spine tester with pure moments of 7.5 Nm in flexion/extension lateral bending right/left. Specimens were tested in groups of intact (1), facetectomy with rigid fixation (2), facetectomy with the new telescopic mobil stabilization device (3). The kinematic response was recorded using an opto electric tracking system and reported in terms of intervertebral range of motion (ROM) and spinal stability. Results. Mobile rod's kinematical behavior is more closer to intact group than rigid fixation. Flexion: 3.6 mm, 3.93 mm and 1.81 mm; extension 3.79 mm, 3.84 mm and 2.27 mm; lateral bending right 3.64 mm, 4.39 mm and 2.47 mm; lateral bendig left 4.6 mm and 5.79 mm and 2.58 mm, respectively. Conclusion. Those involved in the design and evaluation of telescopic mobil rod devices may benefit from evaluation of inter pedicular kinematics. Evaluating inter vertebral motion from the perspective of the pedicle screw allows for a direct and intuitive translation between in vitro test results and design parameters. Furthermore, telescopic mobile rod knematics were similar to intact spine


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 40 - 40
1 Apr 2018
Roth A van der Meer R Willems P van Rhijn L Arts J Ito K van Rietbergen B
Full Access

INTRODUCTION. Growth-guidance constructs are an alternative to growing rods for the surgical treatment of early onset scoliosis (EOS). In growth-guidance systems, free-sliding anchors preserve longitudinal spinal growth, thereby eliminating the need for surgical lengthening procedures. Non-segmental constructs containing ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires have been proposed as an improvement to the traditional Luque trolley. In such a construct, UHMWPE sublaminar wires, secured by means of a knot, serve as sliding anchors at the proximal and distal ends of a construct, while pedicle screws at the apex prevent rod migration and enable curve derotation. Ideally, a construct with the optimal UHMWPE sublaminar wire density, offering the best balance between providing adequate spinal fixation and minimizing surgical exposure, is designed preoperatively for each individual patient. In a previous study, we developed a parametric finite element (FE) model that potentially enables preoperative patient-specific planning of this type of spinal surgery. The objective of this study is to investigate if this model can capture the decrease in range of motion (ROM) after spinal fixation as measured in an experimental study. MATERIALS AND METHODS. In a previous in vitro study, the ROM of an 8-segment porcine spine was measured before and after instrumentation, using different instrumentation constructs with a sequentally decreasing number of wire fixation points. In the current study, the parametric FE model of the thoracolumbar spine was first validated relative to ROM values reported in the literature. The rods, screws, and sublaminar wires were implemented, and the model was subsequently used to replicate the in vitro tests. The experimental and simulated ROM”s for the different instrumentation conditions were compared. RESULTS. Good agreement between in vitro biomechanical tests and FE simulations was observed in terms of the decrease in ROM for the complete construct with wires at each level. The stepwise increase in total ROM with decreasing number of wires at the construct ends was less prominent in silico in comparison to in vitro. CONCLUSION. Important first steps in the implementation and validation of a growth-guidance construct for EOS patients in a patient-specific FE model of the spine have been made in this study. The parametric nature of the FE model allows for rapid personalization. Although further improvements to the model will be necessary to better distinguish between different spinal instrumentation constructs, we conclude that the model can well capture essential aspects of spinal motion and the overall effect of instrumentation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 133 - 133
1 Nov 2018
Weber FE
Full Access

The current gold standard bone substitute is still autologous bone, despite the fact that its harvest demands for a second operation site, causes additional pain, discomfort, potential destruction of the grafting site, and is limited in supply. Since newly developed clinical approaches like transplantation of cells are invasive and costly, and osteoinduction by bone morphogenetic proteins is expensive and is associated with mild to severe side effects, the optimization of osteoconduction appears as promising option to realize bone substitute-based bone tissue engineering. In the 90ties of the last century, the holy grail of pore size for scaffolds in bone tissue engineering was set between 0.3 and 0.5 mm. More recent, papers from others and us indicated that the optimal microarchitecture for bone tissue engineering scaffolds in terms of pore size, constrictions, rod thickness, or rod distance is still unknown. Additive manufacturing appears as an ideal tool to study those diverse microarchitecture options since it can generate scaffolds where size and location of pores and connections between pores can be tested. For the production of our test scaffolds, we applied laser sintering of titanium and lithography-based additive manufacturing of ceramics. Histomorphometry of calvarial defects in rabbits revealed that bone formation was significantly increased by scaffolds with pore diameters in the range of 0.7–1.2 mm. Scaffolds with pores of 1.5 and 1.7 mm perform significantly worse. Therefore, pore diameters in osteoconductive bone substitutes should be 1.0–1.2 mm and thus much bigger than previously suggested. In essence, osteoconductive microarchitectures of degradable bone substitutes can be realized by lithography based additive manufacturing and this methodology appears as a promising tool for the production of personalized bone tissue engineering scaffolds to be used in cranio-maxillofacial surgery, dentistry, and orthopedics


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 79 - 79
1 Mar 2021
Doodkorte R Roth A van Rietbergen B Arts J Lataster L van Rhijn L Willems P
Full Access

Complications after spinal fusion surgery are common, with implant loosening occurring in up to 50% of osteoporotic patients. Pedicle screw fixation strength reduces as a result of decreased trabecular bone density, whereas sublaminar wiring is less affected by these changes. Therefore, pedicle screw augmentation with radiopaque sublaminar wires (made with Dyneema Purity® Radiapque fibers, DSM Biomedical, Geleen, the Netherlands) may improve fixation strength. Furthermore, sublaminar tape could result in a gradual motion transition to distribute stress over multiple levels and thereby reduce implant loosening. The objective of this study is to test this hypothesis in a novel experimental setup in which a cantilever bending moment is applied to individual human vertebrae. Thirty-eight human cadaver vertebrae were stratified into four different groups: ultra-high molecular weight polyethylene sublaminar tape (ST), pedicle screw (PS), metal sublaminar wire (SW) and pedicle screw reinforced with sublaminar tape (PS+ST). The vertebrae were individually embedded in resin, and a cantilever bending moment was applied bilaterally through the spinal rods using a universal material testing machine. This cantilever bending setup closely resembles the loading of fixators at transitional levels of spinal instrumentation. The pull-out strength of the ST (3563 ± 476N) was not significantly different compared to PS, SW or PS+ST. The PS+ST group had a significantly higher pull-out strength (4522 ± 826N) compared to PS (2678 ± 292N) as well as SW (2931 ± 250N). The higher failure strength of PS + ST compared to PS indicates that PS augmentation with ST may be an effective measure to reduce the incidence of screw pullout, even in osteoporotic vertebrae. Moreover, the lower stiffness of sublaminar fixation techniques and the absence of damage to the cortices in the ST group suggest that ST as a stand-alone fixation technique in adult spinal deformity surgery may also be clinically feasible and offer clinical benefits


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 33 - 33
1 Mar 2021
Koria L Farndon M Lavalette D Jones E Mengoni M Brockett C
Full Access

Abstract. Objectives. Over 1% of the global population suffers with ankle osteoarthritis (OA), yet there is limited knowledge on the changes to subchondral bone with OA. In other joints, it has been shown that bone becomes osteosclerotic, with fewer, thicker trabeculae that become hypomineralised, causing an increased apparent bone volume fraction (BV/TV). Microstructural alterations reduce overall joint strength, which may impact the success of late-stage surgical interventions, such as total ankle arthroplasty (TAA). Previous ankle studies have evaluated changes to cartilage, bone plate and bone morphology with OA, hence this study aimed to characterise changes to trabecular architecture. Methods. Three ankle joints were isolated from non-diseased cadaveric feet (three males: 43, 50 and 57 years, MEEC 18-027). Cylindrical subchondral bone specimens (N=6, 6.5 mm Ø) were extracted from the tibial plafond. Osteoarthritic bone samples (N=6, distal tibia) were sourced from local patients (three males: 65, 58 and 68 years, NREC 07/Q1205/27) undergoing TAA surgery. Specimens were imaged using µCT at a 16 µm isotropic resolution (µCT-100 ScanCo Medical). Virtual cores of bone (6.5 mm Ø) were extracted from the image data of the osteoarthritic specimens and trimmed to a height of 4 mm. BoneJ was used to evaluate key morphological indices: BV/TV; anisotropy (DA); trabecular thickness (Tb.Th); trabecular density (Conn.D) and ellipsoid factor (EF) which characterises rod/plate geometry. Differences between the two groups of specimens were evaluated using a t-test with Bonferroni correction. Results. Significant increases in BV/TV and Tb.Th (p<0.01) were observed with OA compared to non-diseased. Differences in EF showed a shift to more rod-dominated structure with OA, but this was not significant. No significant differences to DA and Conn.D were observed. Conclusions. The results of this study agree with trends observed in other OA joints, but would benefit from a larger sample size. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 305 - 305
1 Jul 2014
Roth A Bogie R Willems P Welting T Arts C van Rhijn L
Full Access

Summary Statement. Novel radiopaque UHMWPE sublaminar cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system for the surgical treatment of early onset scoliosis. Introduction. Growth-guidance or self-lengthening rod systems are an alternative to subcutaneous growing rods and the vertical expandable prosthetic titanium rib for the treatment of early onset scoliosis. Their main perceived advantage over growing rods is the marked decrease in subsequent operative procedures. The Shilla growth-guidance system and a modern Luque trolley are examples of such systems; both depend on gliding pedicle screws and/or sliding titanium sublaminar wires. However, the unknown consequences of metal-on-metal wear debris are reason for concern especially in young patients. In this study, instrumentation stability, residual growth in the operated segment after surgery and biocompatibility of the novel radiopaque UHMWPE cables as an alternative to gliding pedicles screws or titanium sublaminar wires were assessed in an immature sheep model. Materials and methods. Twelve immature sheep were treated with segmental sublaminar spinal instrumentation: dual CoCr rods were held in place by pedicle screws at the most caudal instrumented level (L5) and novel radiopaque UHMWPE (Bi. 2. O. 3. additive) woven cables were placed at 5 thoracolumbar levels. Lateral radiographs were taken at 4-week intervals to evaluate growth of the instrumented segment. Four age-matched, unoperated animals served as radiographic control. After 24 weeks follow-up, the animals were sacrificed and the spines were harvested for histological evaluation and CT analysis. Results. No neurological deficits and no complications occurred during the initial postoperative period. One animal died during follow-up due to unknown cause. At sacrifice, none of the cables had loosened and the instrumentation remained stable. Substantial growth occurred in the instrumented segment (L5-T13) in the intervention group. No significant difference in growth of the operated segment was found between the intervention and control groups. Histological analysis showed fibrous encapsulation of the novel radiopaque UHMWPE sublaminar cable in the epidural space, with no evidence of chronic inflammation. Discussion. Novel radiopaque UHMWPE cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system. UHMWPE cables may improve growth results due to the smooth surface properties of the UHMWPE cable and address concerns regarding the consequences of metal-on-metal wear debris


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 53 - 53
1 Mar 2021
Carbone V Baretta A Lucano E Palazzin A Bisotti M Bursi R Emili L
Full Access

For decades, universities and research centers have been applying modeling and simulation (M&S) to problems involving health and medicine, coining the expression in silico clinical trials. However, its use is still limited to a restricted pool of specialists. It is here proposed an easy-to-use cloud-based platform that aims to create a collaborative marketplace for M&S in orthopedics, where developers and model creators are able to capitalize on their work while protecting their intellectual property (IP), and researcher, surgeons and medical device companies can use M&S to accelerate time and to reduce costs of their research and development (R&D) processes. Digital libraries on . InSilicoTrials.com. are built on collaborations among first-rate research center, model developers, software, and cloud providers (partners). Their access is provided to life science and healthcare companies, clinical centers, and research institutes (users), offering them with several solutions for the different steps of the orthopedics and medical devices R&D process. The platform is built using the Microsoft Azure cloud services, conforming to global standards of security and privacy for healthcare, ensuring that clinical data is properly managed, protected, and kept private. The environment protects the IP of partners against the downloading, copying, and changing of their M&S solutions; while providing a safe environment for users to seamlessly upload their own data, set up and run simulations, analyze results, and produce reports in conformity with regulatory requirements. The proposed platform allows exploitation of M&S through a Software-as-a-Service delivery model. The pay-per-use pricing: 1. provide partners with a strong incentive to commercialize their high-quality M&S solutions; 2. enable users with limited budget, such as small companies, research centers and hospitals, to use advanced M&S solutions. Pricing of the M&S tools is based on specific aspects, such as particular features and computational power required, in agreement with the developing partner, and is distinct for different types of customers (i.e., academia or industry). The first medical devices application hosted on . InSilicoTrials.com. is NuMRis (Numerical Magnetic Resonance Implant Safety), implemented in collaboration with the U.S. F.D.A. Center for Devices and Radiological Health, and ANSYS, Inc. The automatic tool allows the investigation of radiofrequency (RF)-induced heating of passive medical implants, such as orthopedic devices (e.g., rods and screws), pain management devices (e.g., leads), and cardiovascular devices (e.g., stents), following the ASTM F2182-19e2 Standard Test Method. NuMRis promotes the broader adoption of digital evidence in preclinical trials for RF safety analysis, supporting the device submission process and pre-market regulatory evaluation. InSilicoTrials.com. aims at defining a new collaborative framework in healthcare, engaging research centers to safely commercialize their IP, i.e., model templates, simulation tools and virtual patients, by helping clinicians and healthcare companies to significantly expedite the pre-clinical and clinical development phases, and to move across the regulatory approval and HTA processes