Background. Stability of total knee arthroplasty (TKA) is dependent on correct and precise rotation of the femoral component. Multiple differing surgical techniques are currently utilized to perform total knee arthroplasty. Accurate implant position have been cited as the most important factors of successful TKA. There are two techniques of achieving soft gap balancing in TKA; a measured resection technique and a balanced gap technique. Debate still exists on the choice of surgical technique to achieve the optimal soft tissue balance with opinions divided between the measured resection technique and the gap balance technique. In the measured resection technique, the bone resection depends on size of the prosthesis and is referenced to fixed anatomical landmarks. This technique however may have accompanying problems in imbalanced patients. Prediction of gap balancing technique, tries to overcome these fallacies. Our aim in this study was twofold: 1) To describe our methodology of
The introduction of robotics for total knee arthroplasty (TKA) into the operating theatre is often associated with a learning curve and is potentially associated with additional complications. The purpose of this study was to determine the learning curve of robotic-assisted (RA) TKA within a multi-surgeon team. This prospective cohort study included 83 consecutive conventional jig-based TKAs compared with 53 RA TKAs using the
Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in component placement and joint function restoration. The purpose of this study was to evaluate prosthetic component alignment in robotic arm-assisted (RA)-TKA performed with functional alignment and intraoperative fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. It was hypothesized that functionally aligned RA-TKA the femoral and tibial cuts would be performed in line with the preoperative joint line orientation. Methods. Between September 2018 and January 2020, 81 RA cruciate retaining (CR) and posterior stabilized (PS) TKAs were performed at a single center. Preoperative radiographs were obtained, and measures were performed according to Paley's. Preoperatively, cuts were planned based on radiographic epiphyseal anatomies and respecting ±3° boundaries from neutral coronal alignment. Intraoperatively, the tibial and femoral cuts were modified based on the individual soft tissue-guided fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension.
In this study we compare survivorship and patient reported outcome measures in robotically assisted versus conventional Total Hip Arthroplasty (THA). This paper investigates the hypothesis that implant survival and PROMS following THAs performed with robotic assistance were not different to outcomes following conventional THAs. Data included all patients undergoing THA for osteoarthritis between 19 April 2016 and 31 December 2020. Analysis of PROMS outcomes was restricted to those who had completed PROMS data preoperatively and at 6 months postoperatively. There were 157,647 procedures, including 3567 robotically assisted procedures, available for comparison of revision rates. 4557 procedures, including 130 robotically assisted procedures, had PROMS data available. The revision rate of primary THA performed with robotic assistance was not statistically different from THA performed by conventional methods (4 year cumulative percent revision 3.1% v 2.7%; HR = 1.05, p=0.67). The Oxford Hip Score, VAS for pain and the EQ-VAS score for overall health showed no statistically significant difference between the groups. The EQ-5D Utility Score showed an improved score (median score 1 v 0.88; OR = 1.58, p=0.007) for the robotically assisted group compared to the conventional group.
Introduction. This study sought to evaluate the patient experience and short-term clinical outcomes associated with the hospital stay of patients who underwent robotic arm-assisted total knee arthroplasty (TKA). These results were compared to a cohort of patients who underwent TKA without robotic assistance performed by the same surgeon. Methods. A cohort of consecutive patients undergoing primary TKA for the diagnosis of osteoarthritis by a single fellowship trained orthopaedic surgeon over a 39-month period was identified. Patients who underwent TKA during the year this surgeon transitioned his entire knee arthroplasty practice to robotic assistance were excluded to eliminate selection bias and control for the learning curve. A final population of 538 TKAs was identified. Of these, 314 underwent TKA without robotic assistance and 224 underwent robotic arm-assisted TKA. All patients received the same prosthesis and post-operative pain protocol. Patient demographic characteristics and short-term clinical data were analyzed. Results.
Introduction:. Computer-assisted surgery (CAS) aims to improve component positioning and mechanical alignment in Total Knee Arthroplasty (TKA).
Purpose. The purpose of this study was to evaluate the postoperative maximal flexion of
Introduction. Total knee arthroplasty (TKA) using conventional instrumentation has been shown to be a safe and effective way of treating end stage osteoarthritis by restoring function and alleviating pain. As robotic technology is developed to assist surgeons with intra-operative decision making such as joint balancing and component positioning, the safety of these advancements must be established. Furthermore, functional recovery and clinical outcomes should achieve comparable results to the gold standard of conventional instrumentation TKA. Methods. Eighty-seven subjects (89 knees) underwent robotic arm assisted TKA by one of three investigators as part of an FDA and IRB approved Investigational Device Exemption (IDE). To achieve the primary endpoint of intra-operative patient safety using a robotic arm assisted cutting tool, the investigators completed questionnaires to assess a series of complications related to soft tissue damage associated with conventional TKA. Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee Society Knee Scores (KSS) were collected pre-operatively and at three month follow-up. Results. The average subject age was 65.8 ± 8.5 and the average BMI was 31.4 ± 5.7. 55% of the subjects were female. No subject experienced any of the rare intra-operative complications that comprise the primary safety endpoint. The average WOMAC score improvement from pre-operative to three months was 33.1 ± 20.04 (p<0.0001). The average KSS Knee score improvement was 46.1 ± 19.7 (p<0.0001). Subjects recovered their pre-operative range of motion by three months post-operative. Conclusion. Results from this prospective robotic arm assisted trial indicated greater intra-operative safety in blood loss and ligamentous damage when compared to conventional TKA. Subjects had excellent return to function and pain relief by three months as indicated by the KSS and WOMAC scores.
Introduction:. Cam type femoroacetabular impingement (FAI) may lead to osteoarthritis (OA)[1]. In 2D studies, an alpha angle greater than 55° was considered abnormal however limitations of 2D alpha angle measurement have led to the development of 3D methods [2–4]. Failure to completely address the bony impingement lesions during surgery has been the most common reason for unsuccessful hip arthroscopy surgery [5].
Introduction. Accurate component placement in total hip arthroplasty (THA) improves post-operative stability and reduces wear and aseptic loosening. Methods for achieving accurate stem placement have not been as extensively studied as cup placement. Objectives. The purpose of this study is to determine how consistently femoral stem version can be corrected to an ideal of 15 +/− 5 degrees using robotic guidance. Furthermore, the study aims to identify other factors related to approach and patient demographics, which may influence the degree of correction obtained. Methods. 175 consecutive patients who underwent MAKO robotic guidance THA were included in the study with a mean age of 57.9 years and a mean body mass index (BMI) of 30.41kg/m2. 48% of the population was male and 74% of the procedures were performed through an anterior approach. The absolute difference between 15 degrees of anteversion and native femoral version as well as 15 degrees of anteversion and femoral stem version was calculated for each patient. A smaller absolute value post-operatively reflects a closer femoral stem version to a target of 15 degrees. Results. The mean native femoral version was 6.39+/−9.14 degrees. The mean stem version was 9.23+/−8.57 degrees. With respect to achieving a target version of 15 degrees the mean absolute difference between native version and 15 degrees was 10.46+/−6.94 degrees and mean absolute difference between the stem version and 15 degrees was 8.37+/−6.03 degrees. This difference was statistically significant. 69% of patients were able to have their native femoral version corrected to a target of 15 degrees. Conclusions.
Unicondylar knee arthroplasty (UKA) is growing in popularity with an increase in utilisation. As a less invasive, bone preserving procedure suitable for knee osteoarthritic patients with intact cruciate ligaments and disease confined to one compartment of the knee joint. The long term survival of a UKA is dependent on many factors, including the accuracy of prosthesis implantation and soft tissue balance.
Introduction and aims.
Background. The
Combined acetabular and femoral anteversion (CA) of the hip following total hip arthroplasty (THA) is critical to the hip function and longevity of the components. However, no study has been reported on the accuracy in restoration of CA of the hip after operation using robotic assistance and conventional free-hand techniques. The purpose of this study was to evaluate if using robotic assistance in THA can better restore native CA than a free-hand technique. Twenty three unilateral THA patients participated in this study. Twelve of them underwent a robotic-arm assisted THA (RIO®
While THA is regarded as one of the most successful surgeries in medicine, recent studies have revealed that ideal acetabular cup implantation is achieved as little as 50% of the time. Malalignment of the acetabular component in THA may result in dislocation, reduced range of motion, or accelerated wear. Recently, robotic-assisted surgery has been introduced to reduce the errors in component placement. The purpose of this study is to longitudinally assess the accuracy of cup placement of a single surgeon at three points in time: directly following a total joint fellowship, after 10 years of experience with manual instrumentation, and directly after adopting robotic technology. Three hundred patients received THA at a single center by a single surgeon representing three series of 100 consecutive patients in each series. The first series A included the surgeon's first 100 THA patients following graduation from joint fellowship (2/2000–5/2002). The second series B included the surgeon's last 100 THA patients before adopting robotic technology (12/2010–1/2012) and the final series C included the surgeon's first 100 THA patients using robotic assistance (4/2012–4/2013). The post-operative abduction and version of the cup was measured using PACS imaging software from the AP and cross-table lateral radiographs. Abduction was measured using a transverse line at the level of the teardrop and the lateral opening angle of the cup relative to this reference line. Anteversion was measured using the ischial method described by Schmalzreid on the crosstable lateral view and accounts for pelvic flexion. The average inclination for the groups A, B, and C was 48.6 ± 7.6°, 37.4 ± 6.2°, and 39.6 ± 47.6°, respectively and for anteversion was 29.3 ± 10.3°, 26.6 ± 8.4°, and 23.6 ± 5.7°, respectively. The cup placement in the original series A was within the Lewinnek safe zone only 31% of the time. This increased to 45% in series B and up to 74% in series C (p < 0.05). With the robotic series C, the three-dimensional pre-operative plan was obtained from the software. The average error (final placement–plan) was −0.7 ± 2.1° for inclination and 1.1 ± 2.0° for version. 93% of the inclination measurements and 94% of the version measurements were within 5° of the plan and 100% of both measurements were within 10° of the plan. Of note, 8% of the robotic cases were actually planned outside of the Lewinnek safe zone to accommodate for patient deformity and optimize correction to achieve the targeted combined anteversion of the acetabular and femoral components.
Introduction. Severe angular deformities in total knee arthroplasty require specific attention to bone resections and soft tissue balancing. This can add technical complexity and time, with some authors reporting an increase of approximately 20 minutes in mean surgery time when managing large deformities with conventional instrumentation [1]. We evaluate the utility of computer-navigation with imageless BoneMorphing® and Apex
Introduction:. UKA allows replacement of a single compartment in patients who have isolated osteoarthritis. However, limited visualization of the surgical site and lack of patient-specific planning provides challenges in ensuring accurate alignment and placement of the prostheses.