Abstract
Introduction:
Computer-assisted surgery (CAS) aims to improve component positioning and mechanical alignment in Total Knee Arthroplasty (TKA). Robotic cutting-guides have been integrated into CAS systems with the intent to improve bone-cutting precision and reduce navigation time by precisely automating the placement of the cutting-guide. The objectives of this study were to compare the intra-operative efficiency and accuracy of a robotic-assisted TKA procedure to a conventional computer-assisted TKA procedure where fixed sequential cutting-blocks are navigated free-hand.
Methods:
This was a retrospective study comparing two distinct cohorts: the control group consisted of patients undergoing TKA with conventional CAS (Stryker Universal Knee Navigation v3.1, Stryker Orthopaedics, MI) from May 2006 to September 2007; the study group consisted of patients undergoing TKA with a robotic cutting-guide (Apex Robotic Technology, ART, OMNIlife Science, MA) from October 2010 to May 2012. Exclusion of patients with preexisting hardware in the joint or an absence of navigation data resulted in a total of 29 patients in the control group and 52 patients in the study group. Both groups were similar with respect to BMI, age, gender, and pre-operative alignment. All patients were operated on by a single surgeon at a single institution.
The navigation log files were analyzed to determine the total navigation time for each case, which was defined as the time from the start of the acquisition of the hip center to the end of the final alignment analysis for both systems. The intraoperative final mechanical axis was also recorded. The tourniquet time (time of inflation prior to incision to deflation immediately after cement hardening) and hospitalization length were compared. Linear regression analysis was performed using R statistical software v2.12.1.
Results:
Navigation times were on average 9.0 minutes shorter in the study group compared to the control group (95% CI: [4.0, 14.1], p = 0.0006). Average absolute intraoperative alignment was 0.5 degrees closer to neutral in the robotic group compared to the conventional CAS group (95% CI: [0.08, 0.95], p = 0.020). Tourniquet time was not significantly different between the two systems (0.2 min, 95% CI [−5.4, 5.9], p = 0.926). Patients in the study group were discharged 0.6 days earlier than patients in the control group (95% CI: [0.1, 1.1], p = 0.0122).
Discussions:
Our results suggest that use of a robotic cutting-guide can decrease the time taken to navigate a TKA procedure in comparison to conventional free-hand navigation of multiple fixed cutting blocks, which is supported by previous studies [1]. However, this time savings did not translate into a reduction in the tourniquet time. We believe this may be due in part to the two different types of bone cement that were used during the distinct study periods, where the hardening time for the cement in the study group was estimated to be approximately 5 minutes longer.
Conclusions:
In one surgeon's hands, use of a robotic cutting-guide decreased navigation time, improved intraoperative final alignment, and decreased hospitalization length when compared to conventional computer-assisted navigation in TKA.