Objectives. Acetabular retractors have been implicated in damage to the femoral
and obturator nerves during total hip replacement. The aim of this
study was to determine the anatomical relationship between retractor
placement and these nerves. Methods. A posterior approach to the hip was carried out in six fresh
cadaveric half pelves. Large Hohmann acetabular retractors were
placed anteriorly, over the acetabular lip, and inferiorly, and
their relationship to the femoral and obturator nerves was examined. Results. If contact with bone was not maintained during retractor placement,
the tip of the anterior retractor had the potential to compress
the femoral nerve by passing superficial to the iliopsoas. If pressure
was removed from the anterior retractor, the tip pivoted on the
anterior acetabular lip, and passed superficial to the iliopsoas,
overlying and compressing the femoral nerve, when pressure was reapplied.
The inferior retractor pierced the obturator membrane in all specimens
medial to the obturator nerve, with subsequent
Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip arthroplasty (THA). Despite this association, the anatomical relationship between retractor and nerve has not been elucidated. A posterior approach to the hip was carried out in 6 fresh frozen cadaveric hemi- pelvises. Large Hohmann acetabular retractors were placed anteriorly over the acetabular rim, and inferiorly, as per routine practice in THA. The femoral and obturator nerves were identified through dissection and their relationship to the retractors was examined. If contact with bone was not maintained during retractor placement, the tip of the anterior retractor had the potential to compress the femoral nerve, by passing either superficial to, or through the bulk of the iliopsoas muscle. If pressure was removed from the anterior retractor, the tip pivoted on the anterior acetabular lip, and passed superficial to iliopsoas, overlying and compressing the femoral nerve, when pressure was reapplied. The inferior retractor pierced the obturator membrane, medial to the obturator foramen in all specimens. Subsequent
Objectives. Despite the fact that research fraud and misconduct are under scrutiny in the field of orthopaedic research, little systematic work has been done to uncover and characterise the underlying reasons for academic
We released the infraspinatus tendons of six sheep, allowed
Introduction. Standard surgical exposure reduces blood flow to the patella during total knee arthroplasty (TKA). Reduction of patellar blood flow has resulted in patellofemoral complications including osteonecrosis and patellar fracture, necessitating revision surgery. Eversion of the patella is typically used to gain access to the knee joint in most TKA surgical approaches. More recently, the development of minimally invasive surgery (MIS) techniques has avoided patellar eversion by subluxing the patella. The present study is the first to measure patellar blood flow during MIS TKA with the knee in both extension and 90 degrees of flexion followed by lateral
Disturbed muscular architecture, fatty infiltration and muscular atrophy remain irreversible in chronic rotator cuff tears (RCT) even after repair. Poly-[ADP-ribose]-polymerase 1 (PARP-1), a nuclear factor involved in DNA damage repair, has shown to be a key element in the up-regulation of early muscle inflammation, atrophy and fat deposition. We therefore hypothesized that the absence of PARP-1 would lead to a reduction in muscular architectural damage, early inflammation, atrophy and fatty infiltration subsequent to combined tenotomy and neurectomy in a PARP-1 knock-out mouse model. PARP-1 knock-out (KO group) and standard wild type C57BL/6 (WT group) mice were randomly allocated into three different time points (1, 6 and 12 weeks, total n=72). In all mice the supraspinatus (SSP) and infraspinatus (ISP) tendons of the left shoulder were detached and the SSP muscle was denervated according to a recently established model. Macroscopic muscle weight analysis,
We dissected 20 cadaver hips in order to investigate the anatomy and excursion of the trochanteric muscles in relation to the posterior approach for total hip replacement. String models of each muscle were created and their excursion measured while the femur was moved between its anatomical position and the dislocated position. The position of the hip was determined by computer navigation. In contrast to previous studies which showed a separate insertion of piriformis and obturator internus, our findings indicated that piriformis inserted onto the superior and anterior margins of the greater trochanter through a conjoint tendon with obturator internus, and had connections to gluteus medius posteriorly. Division of these connections allowed lateral mobilisation of gluteus medius with minimal
Background. Re-attachment of tendon to bone is challenging with surgical repair failing in up to 90% of cases. Poor biological healing is common and characterised by the formation of weak scar tissue. Previous work has demonstrated that decellularised allogenic demineralised bone matrix (DBM) regenerates a physiologic enthesis. Xenografts offer a more cost-effective option but concerns over their immunogenicity have been raised. We hypothesised that augmentation of a healing tendon-bone interface with DBM incorporated with autologous mesenchymal stem cells (MSCs) would result in improved function, and restoration of the native enthesis, with no difference between xenogenic and allogenic scaffolds. Methods. Using an ovine model of tendon-bone
An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment.
The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.