Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 2, Issue 8 | Pages 149 - 154
1 Aug 2013
Aurégan J Coyle RM Danoff JR Burky RE Akelina Y Rosenwasser MP

Objectives. One commonly used rat fracture model for bone and mineral research is a closed mid-shaft femur fracture as described by Bonnarens in 1984. Initially, this model was believed to create very reproducible fractures. However, there have been frequent reports of comminution and varying rates of complication. Given the importance of precise anticipation of those characteristics in laboratory research, we aimed to precisely estimate the rate of comminution, its importance and its effect on the amount of soft callus created. Furthermore, we aimed to precisely report the rate of complications such as death and infection. Methods. We tested a rat model of femoral fracture on 84 rats based on Bonnarens’ original description. We used a proximal approach with trochanterotomy to insert the pin, a drop tower to create the fracture and a high-resolution fluoroscopic imager to detect the comminution. We weighed the soft callus on day seven and compared the soft callus parameters with the comminution status. Results. The mean operating time was 34.8 minutes (. sd. 9.8). The fracture was usable (transverse, mid-shaft, without significant comminution and with displacement < 1 mm) in 74 animals (88%). Of these 74 usable fractures, slight comminution was detected in 47 (63%). In 50 animals who underwent callus manipulation, slight comminution (n = 32) was statistically correlated to the amount of early callus created (r = 0.35, p = 0.015). Two complications occurred: one death and one deep infection. Conclusions. We propose an accurate description of comminution and complications in order to improve experiments on rat femur fracture model in the field of laboratory research. Cite this article: Bone Joint Res 2013;2:149–54


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 525 - 530
1 Apr 2011
Tobita K Ohnishi I Matsumoto T Ohashi S Bessho M Kaneko M Matsuyama J Nakamura K

We evaluated the effect of low-intensity pulsed ultrasound stimulation (LIPUS) on the remodelling of callus in a rabbit gap-healing model by bone morphometric analyses using three-dimensional quantitative micro-CT. A tibial osteotomy with a 2 mm gap was immobilised by rigid external fixation and LIPUS was applied using active translucent devices. A control group had sham inactive transducers applied. A region of interest of micro-CT was set at the centre of the osteotomy gap with a width of 1 mm. The morphometric parameters used for evaluation were the volume of mineralised callus (BV) and the volumetric bone mineral density of mineralised tissue (mBMD). The whole region of interest was measured and subdivided into three zones as follows: the periosteal callus zone (external), the medullary callus zone (endosteal) and the cortical gap zone (intercortical). The BV and mBMD were measured for each zone.

In the endosteal area, there was a significant increase in the density of newly formed callus which was subsequently diminished by bone resorption that overwhelmed bone formation in this area as the intramedullary canal was restored. In the intercortical area, LIPUS was considered to enhance bone formation throughout the period of observation. These findings indicate that LIPUS could shorten the time required for remodelling and enhance the mineralisation of callus.


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives

Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing.

Methods

A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone.