Advertisement for orthosearch.org.uk
Results 1 - 20 of 86
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 632 - 638
1 Jun 2024
Hart CM Kelley BV Mamouei Z Turkmani A Ralston M Arnold M Bernthal NM Sassoon AA

Aims. Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. Methods. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 10. 5. colony-forming units (CFUs) of a bioluminescent strain of Staphylococcus aureus. The bacterial burden was monitored using bioluminescence in vivo. All mice were killed on POD 21. Implants and soft-tissue were harvested and sonicated for analysis of the CFUs. Results. The mean in vivo bioluminescence in the VB group was significantly lower on POD 8 and POD 10 compared with the other groups. There was a significant 1.3-log. 10. (95%) and 1.5-log. 10. (97%) reduction in mean soft-tissue CFUs in the VB group compared with the VP and IC groups (3.6 × 10. 3. vs 7.0 × 10. 4. ; p = 0.022; 3.6 × 10. 3. vs 1.0 × 10. 5. ; p = 0.007, respectively) at POD 21. There was a significant 1.6-log. 10. (98%) reduction in mean implant CFUs in the VB group compared with the IC group (1.3 × 10. 0. vs 4.7 × 10. 1. , respectively; p = 0.038). Combined soft-tissue and implant infection was prevented in 10 of 19 mice (53%) in the VB group as opposed to 5 of 21 (24%) in the VP group, 3 of 15 (20%) in the IC group, and 0% in the SV group. Conclusion. In our in vivo mouse model, antibiotic-releasing calcium sulphate beads appeared to outperform vancomycin powder alone in lowering the bacterial burden and preventing soft-tissue and implant infections. Cite this article: Bone Joint J 2024;106-B(6):632–638


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 16 - 16
1 Dec 2022
Ibrahim M Abdelbary H Mah T
Full Access

Gram-negative prosthetic joint infections (GN-PJI) present unique challenges in management due to their distinct pathogenesis of biofilm formation on implant surfaces. To date, there are no animal models that can fully recapitulate how a biofilm is challenged in vivo in the setting of GN-PJI. The purpose of this study is to establish a clinically representative GN-PJI in vivo model that can reliably depict biofilm formation on titanium implant surface. We hypothesized that the biofilm formation on the implant surface would affect the ability of the implant to be osseointegrated. The model was developed using a 3D-printed, medical-grade titanium (Ti-6Al-4V), monoblock, cementless hemiarthroplasty hip implant. This implant was used to replace the femoral head of a Sprague-Dawley rat using a posterior surgical approach. To induce PJI, two bioluminescent Pseudomonas aeruginosa (PA) strains were utilized: a reference strain (PA14-lux) and a mutant strain that is defective in biofilm formation (DflgK-lux). PJI development and biofilm formation was quantitatively assessed in vivo using the in vivo imaging system (IVIS), and in vitro using the viable colony count of the bacterial load on implant surface. Magnetic Resonance Imaging (MRI) was acquired to assess the involvement of periprosthetic tissue in vivo, and the field emission scanning electron microscopy (FE-SEM) of the explanted implants was used to visualize the biofilm formation at the bone-implant interface. The implant stability, as an outcome, was directly assessed by quantifying the osseointegration using microCT scans of the extracted femurs with retained implants in vitro, and indirectly assessed by identifying the gait pattern changes using DigiGaitTM system in vivo. A localized prosthetic infection was reliably established within the hip joint and was followed by IVIS in real-time. There was a quantitative and qualitative difference in the bacterial load and biofilm formation between PA14 and DflgK. This difference in the ability to persist in the model between the two strains was reflected on the gait pattern and implant osseointegration. We developed a novel uncemented hip hemiarthroplasty GN-PJI rat model. This model is clinically representative since animals can bear weight on the implant. PJI was detected by various modalities. In addition, biofilm formation correlated with implant function and stability. In conclusion, the proposed in vivo GN-PJI model will allow for more reliable testing of novel biofilm-targeting therapetics


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 29 - 29
1 Oct 2022
Ibrahim M Mah T Abdelbary H
Full Access

Introduction. Gram-negative prosthetic joint infections (GN-PJI) present unique challenges in management due to their distinct pathogenesis of biofilm formation on implant surfaces. The purpose of this study is to establish a clinically representative GN-PJI model that can reliably recapitulate biofilm formation on titanium implant surface in vivo. We hypothesized that biofilm formation on an implant surface will affect its ability to osseointegrate. Methods. The model was developed using 3D-printed titanium hip implants, to replace the femoral head of male Sprague-Dawley rats. GN-PJI was induced using two bioluminescent Pseudomonas aeruginosa strains: a reference strain (PA14-lux) and a mutant biofilm-defective strain (ΔflgK-lux). Infection was monitored in real-time using the in vivo imaging system (IVIS) and Magnetic Resonance Imaging (MRI). Bacterial loads on implant surface and in periprosthetic tissues were quantified utilizing viable-colony-count. Field-emission scanning-electron-microscopy of the explanted implants was used to visualize the biofilm formation at the bone-implant-interface. The implant stability, as an outcome, was directly assessed by quantifying the osseointegration in vitro using microCT scan, and indirectly assessed by identifying the gait pattern changes using DigiGait. TM. system in vivo. Results. Localized infection was established within the hip joint and was followed by IVIS in real-time. There was a quantitative and qualitative difference in the bacterial load and biofilm formation between PA14-lux and ΔflgK-lux. This difference in the ability to persist in the model between the two strains was reflected in the gait pattern and implant osseointegration. Conclusions. We developed a novel uncemented hip hemiarthroplasty, GN-PJI rat model. To date, the proposed in vivo biofilm-based model is the most clinically representative for GN-PJI since animals can bear weight on the implant and poor osseointegration correlates with biofilm formation. In addition, localized PJI was detected by various modalities. Clinical Relevance. The proposed in vivo GN-PJI model will allow for more reliable testing of novel biofilm-targeting therapeutics


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 115 - 115
1 Jul 2020
Jhirad A Wohl G
Full Access

In osteoporosis treatment, current interventions, including pharmaceutical treatments and exercise protocols, suffer from challenges of guaranteed efficacy for patients and poor patient compliance. Moreover, bone loss continues to be a complicating factor for conditions such as spinal cord injury, prescribed bed-rest, and space flight. A low-cost treatment modality could improve patient compliance. Electrical stimulation has been shown to improve bone mass in animal models of disuse, but there have been no studies of the effects of electrical stimulation on bone in the context of bone loss under hormone deficiency such as in post-menopausal osteoporosis. The purpose of this study was to explore the effects of electrical stimulation on changes in bone mass in the ovariectomized rat model of post-menopausal osteoporosis. All animal protocols were approved by the institutional Animal Research Ethics Board. We developed a custom electrical stimulation device capable of delivering a constant current, 15 Hz sinusoidal signal. We used 30 female Sprague Dawley rats (12–13 weeks old). Half (n=15) were ovariectomized (OVX), and half (n=15) underwent sham OVX surgery (SHAM). Three of each OVX and SHAM animals were sacrificed at baseline. The remaining 24 rats were separated into four equal groups (n=6 per group): OVX electrical stimulation (OVX-stim), OVX no stimulation (OVX-no stim), SHAM electrical stimulation (SHAM-stim), and SHAM no stimulation (SHAM-no stim). While anaesthetized, stimulation groups received transdermal electrical stimulation to the right knee through bilateral skin-mounted electrodes (10 × 10 mm) with electrode gel. The left knee served as a non-stimulated contralateral control. The no-stimulation groups had electrodes placed on the right knee, but not connected. Rats underwent the stim/no-stim procedure for one hour per day for six weeks. Rats were sacrificed (CO2) after six weeks. Femurs and tibias were scanned by microCT focussed on the proximal tibia and distal femur. MicroCT data were analyzed for trabecular bone measures of bone volume fraction (BV/TV), thickness (Tb.Th), and anisotropy, and cortical bone cross-sectional area and second moment of area. Femurs and tibias from OVX rats had significantly less trabecular bone than SHAM (femur BV/TV = −74.1%, tibia BV/TV = −77.6%). In the distal femur of OVX-stim rats, BV/TV was significantly greater in the stimulated right (11.4%, p < 0 .05) than the non-stimulated contralateral (left). BV/TV in the OVX-stim right femur also tended to be greater than that in the OVX-no-stim right femur, but the difference was not significant (17.7%, p=0.22). There were no differences between stim and no-stim groups for tibial trabecular measures, or cortical bone measures in either the femur or the tibia. This study presents novel findings that electrical stimulation can partially mitigate bone loss in the OVX rat femur, a model of human post-menopausal bone loss. Further work is needed to explore why there was a differential response of the tibial and femoral bone, and to better understand how bone cells respond to electrical stimulation. The long-term goal of this work is to determine if electrical stimulation could be used as a complementary modality for preventing post-menopausal bone loss


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 30 - 30
7 Nov 2023
Mdingi V Marais L Gens L Mys K Zeiter S Richards G Moriarty F Chittò M
Full Access

We investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. We aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. We also compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis- contaminated polyetheretherketone (PEEK) screws in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. Bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels on days 0, 6, 20, and 28. Combination antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during early infection compared to the control group. Short- term celecoxib treatment showed similar radiological results without a reduction in treatment success (88.9%). No differences in the inflammatory markers were observed. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 31 - 31
24 Nov 2023
Mdingi V Gens L Mys K Zeiter S Marais L Richards G Moriarty F Chitto M
Full Access

Aim. In this study we investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. Specifically, we aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. In addition, we compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Method. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis-contaminated polyetheretherketone (PEEK) screws (1.5 × 10. 6. CFU per screw) in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. After implantation, bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels at four time points (day 0, 6, 20, and 28). Results. The combination of antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during the early post-infection period compared to the control group. Short-term celecoxib treatment showed similar radiological results, however, there was no significant reduction in treatment success in the celecoxib group (88.9%). No differences in the selected inflammatory markers were observed. Conclusion. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy. This study suggests that celecoxib may be a useful addition to the multimodal approach to pain management in orthopaedic device-related infections


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 2 - 2
1 Sep 2012
Li R Qamirani E Atesok K Nauth A Wang S Li C Schemitsch EH
Full Access

Purpose. Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in bone repair by promoting angiogenesis and osteogenesis. In our previous study, endothelial progenitor cells (EPCs) promoted bone healing in a rat segmental bone defect as confirmed by radiological, histological and microCT evaluations (Atesok, Li, Schemitsch 2010); EPC treatment of fractures resulted in a significantly higher strength by biomechanical examination (Li, Schemitsch 2010). In addition, cell-based VEGF gene transfer has been effective in the treatment of segmental bone defects in a rabbit model (Li, Schemitsch et al 2009); Purpose of this study: Evaluation of VEGF gene expression after EPC local therapy for a rat segmental bone defect. Method. Rat bone marrow-derived EPCs were isolated from the rat bone marrow by the Ficoll-paque gradient centrifuge technique. The EPCs were cultured for 7 to 10 days in endothelial cell growth medium with supplements (EGM-2-MV-SingleQuots, Clonetics). and collected for treatment of the rat segmental bone defect. EPCs were identified by immunocytochemistry staining with primary antibodies for CD34, CD133, FLK-1, and vWF. A total of fifty six rats were studied. A five millimeter segmental bone defect was created in the middle 1/3 of each femur followed by mini plate fixation. The treatment group received 1×106 EPCs locally at the bone defect and control animals received saline only. Seven control and seven EPC treated rats were included in each group at 1, 2, 3 and 10 weeks. Animals were sacrificed at the end of the treatment period, and specimens from the fracture gap area were collected and immediately frozen. Rat VEGF mRNA was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by VisionWorksLS. All measurements were performed in triplicate. Results. Cultured EPCs at 1 week showed positive staining for CD34, CD133, Flk-1 and vWf markers. The EPC group had a greater VEGF expression than the control group at week 1, 2 and 3 but not at week 10. Three VEGF isoforms were detected in this rat model: VEGF120, VEGF164 and VEGF188. VEGF120 and VEGF164 levels peaked at two weeks, while VEGF188 levels peaked at three weeks. All three VEGF isoform levels were low at ten weeks. Conclusion. EPC-based therapy for a segmental bone defect results in increased VEGF expression during the early period of fracture repair. In addition, the specific VEGF isoform may be a key regulator of the bone healing process. These findings demonstrate that EPCs promote fracture healing by increasing VEGF levels and thus stimulating angiogenesis, a process that is essential for early callus formation and bone regeneration


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 572 - 576
1 Apr 2015
Polfer EM Hope DN Elster EA Qureshi AT Davis TA Golden D Potter BK Forsberg JA

Currently, there is no animal model in which to evaluate the underlying physiological processes leading to the heterotopic ossification (HO) which forms in most combat-related and blast wounds. We sought to reproduce the ossification that forms under these circumstances in a rat by emulating patterns of injury seen in patients with severe injuries resulting from blasts. We investigated whether exposure to blast overpressure increased the prevalence of HO after transfemoral amputation performed within the zone of injury. We exposed rats to a blast overpressure alone (BOP-CTL), crush injury and femoral fracture followed by amputation through the zone of injury (AMP-CTL) or a combination of these (BOP-AMP). The presence of HO was evaluated using radiographs, micro-CT and histology. HO developed in none of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats. Exposure to blast overpressure increased the prevalence of HO. This model may thus be used to elucidate cellular and molecular pathways of HO, the effect of varying intensities of blast overpressure, and to evaluate new means of prophylaxis and treatment of heterotopic ossification. Cite this article: Bone Joint J 2015;97-B:572–6


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 87 - 87
1 Dec 2019
Burch MA Thompson K Eberli U Arens D Milstrey A Stadelmann V Richards G Moriarty F
Full Access

Aim. Non-steroidal anti-inflammatory drugs (NSAIDs) are a cornerstone of perioperative pain management in orthopedic trauma surgery, although concerns persist regarding the potential impact of these drugs on fracture healing. Furthermore, NSAIDs may also exert an influence on host immune defenses, which may also be important in the context of infection treatment. However, this has been very much under-investigated in the clinical and scientific literature. The aim of this study was to determine the impact of NSAIDs on the course of an orthopedic device-related infection (ODRI) and its response to antibiotic therapy in a rat model. Method. A polyetheretherketone (PEEK) screw was inserted in the proximal tibia of 48 skeletally mature female Wistar rats: 12 control animals received a sterile screw, of which 6 also received NSAID therapy (carprofen, 5 mg/kg s.c. once daily); 36 rats received a Staphylococcus epidermidis-inoculated screw, of which 18 received NSAID therapy. Antibiotic therapy was administered from day 7–21 in 9 animals from all groups receiving S. epidermidis-inoculated screws (cefazolin: 30 mg/kg; s.c., b.i.d. plus rifampin: 25 mg/kg; s.c., b.i.d.). Bone histomorphometric changes were monitored using longitudinal microCT scanning, performed postoperatively, and at 3, 6, 9, 14, 20 and 28 days (euthanasia). Quantitative bacteriology of the implant, bone and overlying soft tissue was performed to assess infection status of individual animals. Results. All animals receiving S. epidermidis-inoculated screws in the absence of antibiotic therapy were confirmed as infected at euthanasia. Quantitative microbiology showed no significant change in bacterial load in NSAID-treated animals versus control. However, NSAID administration dramatically impaired antibiotic efficacy, with 7/8 animals remaining infected when NSAIDs were co-administered, whilst only 2/9 of control animals were infected when NSAIDs were withheld. Pronounced osteolysis was observed by day 6–9 in control animals, with reparative processes (periosteal proliferation and mineralization) observed at day 14. NSAID treatment markedly prevented S. epidermidis-induced osteolysis, but also reparative processes. Antibiotic treatment did not affect the bone changes. Conclusions. NSAID administration dramatically affected the response of bone tissue to infection, reducing osteolysis but also impairing reparative processes. Crucially, NSAIDs dramatically reduced antibiotic efficacy. Given these pronounced negative effects, further investigations should be conducted to determine the underlying pathophysiological mechanism and better understand the consequences of the therapeutic use of NSAIDs in human patients with ODRI


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 11 - 11
1 Dec 2022
Tolgyesi A Huang C Akens M Hardisty M Whyne C
Full Access

Bone turnover and the accumulation of microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. The present study aims to establish a preliminary understanding of microdamage accumulation and load to failure in osteolytic vertebrae following stereotactic body radiotherapy (SBRT), zoledronic acid (ZA), or docetaxel (DTX) treatment.

Twenty-two six-week old athymic female rats (Hsd:RH-Foxn1rnu, Envigo, USA) were inoculated with HeLa cervical cancer cells through intracardiac injection (day 0). Institutional approval was obtained for this work and the ARRIVE guidelines were followed. Animals were randomly assigned to four groups: untreated (n=6), spine stereotactic body radiotherapy (SBRT) administered on day 14 (n=6), zoledronic acid (ZA) administered on day 7 (n=5), and docetaxel (DTX) administered on day 14 (n=5). Animals were euthanized on day 21. T13-L3 vertebral segments were collected immediately after sacrifice and stored in −20°C wrapped in saline soaked gauze until testing. µCT scans (µCT100, Scanco, Switzerland) of the T13-L3 segment confirmed tumour burden in all T13 and L2 vertebrae prior to testing. T13 was stained with BaSO4 to label microdamage. High resolution µCT scans were obtained (90kVp, 44uA, 4W, 4.9µm voxel size) to visualize stain location and volume. Segmentations of bone and BaSO4 were created using intensity thresholding at 3000HU (~736mgHA/cm3) and 10000HU (~2420mgHA/cm3), respectively. Non-specific BaSO4 was removed from the outer edge of the cortical shell by shrinking the segmentation by 105mm in 3D. Stain volume fraction was calculated as the ratio of BaSO4 volume to the sum of BaSO4 and bone volume. The L1-L3 motion segments were loaded under axial compression to failure using a µCT compatible loading device (Scanco) and force-displacement data was recorded. µCT scans were acquired unloaded, at 1500µm displacement and post-failure. Stereological analysis was performed on the L2 vertebrae in the unloaded µCT scans. Differences in mean stain volume fraction, mean load to failure, and mean bone volume/total volume (BV/TV) were compared between treatment groups using one-way ANOVAs. Pearson's correlation between stain volume fraction and load to failure by treatment was calculated using an adjusted load to failure divided by BV/TV.

Stained damage fraction was significantly different between treatment groups (p=0.0029). Tukey post-hoc analysis showed untreated samples to have higher stain volume fraction (16.25±2.54%) than all treatment groups (p<0.05). The ZA group had the highest mean load to failure (195.60±84.49N), followed by untreated (142.33±53.08N), DTX (126.60±48.75N), and SBRT (95.50±44.96N), but differences did not reach significance (p=0.075). BV/TV was significantly higher in the ZA group (49.28±3.56%) compared to all others. The SBRT group had significantly lower BV/TV than the untreated group (p=0.018). Load divided by BV/TV was not significantly different between groups (p=0.24), but relative load to failure results were consistent (ZA>Untreated>DTX>SBRT). No correlations were found between stain volume fraction and load to failure.

Focal and systemic cancer treatments effect microdamage accumulation and load to failure in osteolytic vertebrae. Current testing of healthy controls will help to further separate the effects of the tumour and cancer treatments on bone quality.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 15 - 15
1 Dec 2022
Tolgyesi A Huang C Akens M Hardisty M Whyne C
Full Access

Bone turnover and the accumulation of microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. The present study aims to establish a preliminary understanding of microdamage accumulation and load to failure in osteolytic vertebrae following stereotactic body radiotherapy (SBRT), zoledronic acid (ZA), or docetaxel (DTX) treatment.

Twenty-two six-week old athymic female rats (Hsd:RH-Foxn1rnu, Envigo, USA) were inoculated with HeLa cervical cancer cells through intracardiac injection (day 0). Institutional approval was obtained for this work and the ARRIVE guidelines were followed. Animals were randomly assigned to four groups: untreated (n=6), spine stereotactic body radiotherapy (SBRT) administered on day 14 (n=6), zoledronic acid (ZA) administered on day 7 (n=5), and docetaxel (DTX) administered on day 14 (n=5). Animals were euthanized on day 21. T13-L3 vertebral segments were collected immediately after sacrifice and stored in −20°C wrapped in saline soaked gauze until testing. µCT scans (µCT100, Scanco, Switzerland) of the T13-L3 segment confirmed tumour burden in all T13 and L2 vertebrae prior to testing. T13 was stained with BaSO4 to label microdamage. High resolution µCT scans were obtained (90kVp, 44uA, 4W, 4.9µm voxel size) to visualize stain location and volume. Segmentations of bone and BaSO4 were created using intensity thresholding at 3000HU (~736mgHA/cm3) and 10000HU (~2420mgHA/cm3), respectively. Non-specific BaSO4 was removed from the outer edge of the cortical shell by shrinking the segmentation by 105mm in 3D. Stain volume fraction was calculated as the ratio of BaSO4 volume to the sum of BaSO4 and bone volume. The L1-L3 motion segments were loaded under axial compression to failure using a µCT compatible loading device (Scanco) and force-displacement data was recorded. µCT scans were acquired unloaded, at 1500µm displacement and post-failure. Stereological analysis was performed on the L2 vertebrae in the unloaded µCT scans. Differences in mean stain volume fraction, mean load to failure, and mean bone volume/total volume (BV/TV) were compared between treatment groups using one-way ANOVAs. Pearson's correlation between stain volume fraction and load to failure by treatment was calculated using an adjusted load to failure divided by BV/TV.

Stained damage fraction was significantly different between treatment groups (p=0.0029). Tukey post-hoc analysis showed untreated samples to have higher stain volume fraction (16.25±2.54%) than all treatment groups (p<0.05). The ZA group had the highest mean load to failure (195.60±84.49N), followed by untreated (142.33±53.08N), DTX (126.60±48.75N), and SBRT (95.50±44.96N), but differences did not reach significance (p=0.075). BV/TV was significantly higher in the ZA group (49.28±3.56%) compared to all others. The SBRT group had significantly lower BV/TV than the untreated group (p=0.018). Load divided by BV/TV was not significantly different between groups (p=0.24), but relative load to failure results were consistent (ZA>Untreated>DTX>SBRT). No correlations were found between stain volume fraction and load to failure.

Focal and systemic cancer treatments effect microdamage accumulation and load to failure in osteolytic vertebrae. Current testing of healthy controls will help to further separate the effects of the tumour and cancer treatments on bone quality.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 102 - 102
1 Jul 2020
Mosley G Nasser P Lai A Charen D Evashwick-Rogler T Iatridis J
Full Access

Low back pain is more common in women than men, yet most studies of intervertebral disc (IVD) degeneration do not address sex differences. In humans, there are sex differences in spinal anatomy and degenerative changes in biomechanics, and animal models of chronic pain have demonstrated sex differences in pain transduction. However, there are few studies investigating sex differences in annular puncture IVD degeneration models. IVD puncture is known to result in progressive biomechanical alterations, but whether these IVD changes correlate with pain is unknown. This study used a rat IVD injury model to determine if sex differences exist in mechanical allodynia, biomechanics, and the relationship between them, six weeks after IVD injury. Procedures were IACUC approved. 24 male & 24 female four-month-old Sprague-Dawley rats underwent a sham or annular puncture injury surgery (n=12 male, 12 female). In injury groups, three lumbar IVDs were each punctured three times with a needle, and injected with tumor necrosis factor-alpha. Mechanical allodynia was tested biweekly using von Frey filaments. Six weeks after IVD injury, rats were euthanized and motion segments were dissected for non-destructive axial tension-compression and torsional rotation biomechanical testing. Two-way ANOVA with Bonferroni corrections identified statistically significant differences (p < 0 .05) and correlations used Pearson's coefficient. Annular puncture injury induced a significant increase in mechanical allodynia compared to sham in male but not female rats up to six weeks after injury. There was a significant sex effect on both torque range and torsional stiffness, with males exhibiting greater stiffness and torque range than females. Tensile stiffness, compressive stiffness, and axial range of motion showed no sex difference. Males and females showed similar patterns of correlation between variables when sham and injury groups were analyzed together, but correlations were stronger in males. Most correlations were clustered within testing approach: axial biomechanics negatively correlated, torsional biomechanics positively correlated, and von Frey thresholds positively correlated. Surprisingly, mechanical allodynia did not correlate with any biomechanics after injury, and the axial and torsional biomechanics showed little correlation. This study demonstrates that males and females respond to IVD injury differently. Given the absence of correlation between pain and biomechanics, pain cannot be attributed completely to biomechanical changes. This may explain why spinal fusion surgery, an intervention limited to the spine, has produced inconsistent results and is controversial for patients with low back pain. Thus, in addressing low back pain, we must consider both spinal tissues and the nervous system. Further, the limited correlation between axial and torsional biomechanics indicates that IVD injury may have distinct effects on nucleus pulposus and annulus fibrosus. Biomechanics did not differ between sham and injury at week six, suggesting healing after injury. It remains possible that acute biomechanical changes may initiate chronic pain pathogenesis. We conclude that the observed sex differences demonstrate the need for inclusion of both males and females in IVD injury and pain studies, and suggest that males and females may require different treatments for conditions that appear similar


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 32 - 32
1 Sep 2012
Yu Y Luk F Yang J Walsh W
Full Access

To set up an osteosarcoma mouse model with spontaneous lung metastasis and to identify a marker of osteosarcoma metastasis and to inhibit the marker against the invasive ability of an osteosarcoma cell line. A human osteosarcoma orthotopic mouse model was set up by injecting 143B human osteosarcoma cells into mouse tibia. Type I insulin-like growth factor receptor (IGF-1R) and its downstream signalling factors were measured in samples from the primary tumor and the lung secondaries by immunohistochemistry. Human Alu mRNA expression was tested using in situ hybridization assay. A Matrigel assay was used to assess cell invasion ability under the interference of a MEK/ERK pathway specific inhibitor, U0126. All fifteen mice showed tumour mass at the left tibia and lung metastasis. Human Alu expression in the primary and secondary tumours confirmed human origin of the tumour cells. Total IGF-1R, MEK, Akt, p38 and phosphorylated MEK (p-MEK), but not p-Akt and p-p38, were positive in both local tumours and lung secondaries. Leiomyosarcoma controls expressed p-Akt and p-MEK, but not p-p38. The 143B cells treated with U0126 had significantly lower in vitro invasion ability compared with controls. The IGF-1R-MEK signalling pathway, particularly Ras/Raf/MEK/ERK, may play an important role in osteosarcoma lung metastasis, and the targeting MEK/ERK by its specific inhibitor may have a potential use in the effective treatment of osteosarcoma


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 18 - 18
1 Dec 2022
Taha M Hadden W Ibrahim M Abdelbary H
Full Access

Prosthetic joint infection (PJI) is a complex disease that causes significant damage to the peri-implant tissue. Developing an animal model that is clinically relevant in depicting this disease process is an important step towards developing novel successful therapies. In this study, we have performed a thorough histologic analysis of peri-implant tissue harvested post Staphylococcus aureus (S. aureus) infection of a cemented 3D-printed titanium hip implant in rats.

Sprague-Dawley rats underwent left hip cemented 3D-printed titanium hemiarthroplasty via posterior approach under general anesthesia. Four surgeries were performed for the control group and another four for the infected group. The hip joint was inoculated with 5×109 CFU/mL of S. aureus Xen36 prior to capsule closure. The animals were scarified 3 weeks after infection. The femur was harvested and underwent micro-CT and histologic analysis. Hematoxylin and eosin (H&E), as well as Masson's trichrome (MT) stains were performed. Immunohistochemistry (IHC) using rabbit antibody for S. aureus was also used to localize bacterial presence within femur and acetabulum tissue .

The histologic analysis revealed strong resemblance to tissue changes in the clinical setting of chronic PJI. IHC demonstrated the extent of bacterial spread within the peri-implant tissue away from the site of infection. The H&E and MT stains showed 5 main features in infected bone: 1) increased PMNs, 2) fibrovascular inflammation, 3) bone necrosis, and 4) increased osteoclasts 5) fibrosis of muscular tissue and cartilage. Micro CT data showed significantly more osteolysis present around the infected prosthesis compared to control (surgery with no infection).

This is the first clinically relevant PJI animal model with detailed histologic analysis that strongly resembles the clinical tissue pathology of chronic PJI. This model can provide a better understanding of how various PJI therapies can halt or reverse peri-implant tissue damage caused by infection.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 16 - 16
1 Nov 2016
Degen R Carbone A Carballo C Zong J Chen T Lebaschi A Ying L Deng X Rodeo S
Full Access

Bone marrow concentrates are being used to augment soft tissue healing. However, only 0.01% of these cells meet the criteria of a mesenchymal stem cell (MSC), which likely accounts for the variability in reported results. Previous studies using an established rat rotator cuff repair model have demonstrated that bone marrow-derived MSCs had no effect on healing. In this study we evaluated the effect of purified human MSCs on rotator cuff healing in an athymic rat model. Hypothesis: Purified human MSCs added to the repair site will improve biomechanical strength and fibrocartilage formation of the healing tendon. Fifty-two athymic rats underwent unilateral detachment and repair of the supraspinatus tendon with either fibrin glue (control) or fibrin glue with 106 hMSCs (experimental) applied at the repair site. Flow cytometry verified the stem cell phenotype of the cells as CD73+, CD90+, CD105+, CD14-, CD34- and CD45-. Rats were sacrificed at 2 and 4 weeks, with 10 used for biomechanical testing and 3 for histologic analysis from each group. Biomechanical testing revealed a significant increase in failure load (11.5±2.4N vs. 8.5±2.4N, p=0.002) and stiffness (7.1±1.2 N/mm vs. 5.7±2.1 N/mm, p0.17). These data demonstrate the potential for stem cells to augment tendon healing. This is the first study to use purified stem cells, rather than simple bone marrow concentrate. In the future, cell sorting techniques and culture expansion could be used to select and expand the small population of true stem cells in bone marrow. Furthermore, healing could potentially be improved with repeat cell injection at an additional post-operative time point


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 13 - 13
1 May 2012
D. L M. M L. P K. M O. B M. L S. W H.Z. K
Full Access

Sclerostin is a negative regulator of osteoblast differentiation and bone formation, probably through inhibition of the Wnt pathway. Distraction osteogenesis (DO) can be complicated by osteopenia and poor anabolic response, which may benefit from anabolic therapy. Sclerostin antibody (Scl-Ab) has been reported to stimulate bone formation and restore bone mass and strength in aged ovariectomised rats as well as to enhance fracture healing. We sought to examine the effects of Scl-Ab in a rat model of DO. A femoral osteotomy was stabilised with an EBI fixator in male Sprague Dawley rats, with distraction of 0.25mm twice daily to a total 7mm. Saline or Scl-Ab was administered twice weekly throughout distraction and/or up to 4 or 6 weeks post-commencement of distraction. Three groups were examined, Saline, Delayed Scl-Ab (D Scl-Ab, post distraction only) and Continuous Scl-Ab (Cont Scl-Ab). Radiographs demonstrated a trend for increased union rates with Scl-Ab at 6 weeks, with 50% of animals for D Scl-Ab or Cont Scl-Ab versus 20% of control animals. DEXA scans at 2 weeks revealed a 63% increase in regenerate BMD in the Cont Scl-Ab group (p< 0.01) and a 41% increase in the D Scl-Ab group (p< 0.05), compared to Saline. In addition, an increase of 116% in BMC was seen in the Cont Scl-Ab group (p< 0.01). At 6 weeks regenerate bone area was increased 18% in D Scl-Ab and 23% in Cont Scl-Ab. μCT scans of the regenerate revealed an 85%-89% increase in bone volume with Scl-Ab treatment at 6 weeks (p< 0.05). Bone volume ratio (BV/TV) was increased 77%-82% (p< 0.05). Scl-Ab treatment enhanced the amount of bone formed in this distraction model, when given throughout or post-distraction. Histological assessment of dynamic bone formation parameters will reveal the mechanism behind the enhanced repair, and its mechanical consequences will be examined


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 109 - 109
1 May 2016
Tucker J Gordon J Zanes R Zuskov A Cirone J Vinciguerra J Bloebaum R Soslowsky L
Full Access

INTRODUCTION. Rotator cuff tears are common injuries which often require surgical repair. Unfortunately, repairs often fail [1] and improved repair strength is essential. P2 Porous titanium (DJO Surgical, Austin TX) has been shown to promote osseointegration [2,3] and subdermal integration [4]. However, the ability of P2Porous titanium to aid in supraspinatus tendon-to-bone repair has not been evaluated. Therefore, the purpose of this study was to investigate P2 implants used to augment supraspinatus tendon-to-bone repair in a rat model [5]. We hypothesized that supraspinatus tendon-to-bone repairs with P2 implants would allow for ingrowth and increased repair strength when compared to standard repair alone. METHODS. Thirty-four adult male Sprague-Dawley rats were used (IACUC approved). Rats received bilateral supraspinatus detachment and repair with one limb receiving P2 implant. Animals were sacrificed at time 0 (n=3), 2 weeks (n=8), 4 weeks (n=9) and 12 weeks (n=14). Limbs were either dissected for histological and SEM analysis or mechanical testing as described previously [5]. Specimens for histology and SEM were embedded in PMMA for tissue-implant interface analysis. Specimens were first viewed in SEM under BSE to detect bony ingrowth, then stained with Sanderson's Rapid Bone Stain and viewed under transmitted and polarized light for tissue ingrowth. Comparisons were made using Student's t-tests with significance at p≤0.05. RESULTS. No differences in cross-sectional area were detected at any time point (Fig 1A). Percent relaxation was significantly increased in the P2 group at 2 weeks, but not at 4 and 12 weeks (Fig 1B). Maximum load was significantly increased in the P2 group at 2 weeks, but not at 4 weeks (Fig 1C – maximum load not reported due to failure at grip at 12 weeks). Modulus was significantly increased in the P2 group at 4 weeks, but not at 2 or 12 weeks (Fig 1D). No differences were detected in stiffness at any time point (data not shown). BSE analysis demonstrated bone ingrowth (Fig 2) and histological analysis showed soft tissue integration (Fig 3). DISCUSSION. Results indicate superior mechanical properties in the P2 group at 2 and 4 weeks, and tissue ingrowth at all time points. Importantly, at 2 weeks, the P2group had 76% increased maximum load compared to standard repair. As supraspinatus tendon re-tears are extremely common early [1] and occur at the tendon-to-bone interface, this finding supports the reduction of re-tear risk with the P2 implant. Although no differences were detected in maximum load at 4 weeks, the increase at 2 weeks denotes that P2 implants improved early tendon-to-bone healing. Additionally, at 4 weeks, the P2 implant group had significantly increased elastic modulus, further supporting increased mechanical properties due to the P2 implant. Clinically, improved early healing might allow faster rehabilitation and associated recovery. This study demonstrates that the P2 implant improves tendon-to-bone healing up to 4 weeks (with no detrimental effects at longer time points), suggesting that P2 porous titanium may be of benefit for use in clinical rotator cuff repairs


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 9 - 9
1 Dec 2015
Dvorzhinskiy A Perino G Chojnowski R Van Der Meulen M Ross F Bostrom M Yang X
Full Access

To test the hypothesis that: CERAMENT[™]|G (C-G) would improve new bone growth and decrease infection rate after debridement as compared with 1) CERAMENT|BONE VOID FILLER (CBVF) and 2) no void filler in a rat osteomyelitis model. 72 Sprague Dawley rats were injected with 1.5 × 10∧6 CFU of S. aureus into a drill hole in the right tibia. After 3 weeks, the osteomyelitic defect was debrided, and filled with either: 1) C-G (n=32), 2) CBVF (n=20), or 3) nothing (n=20). 6 weeks after the second surgery, 20 rats from each group were sacrificed and the right tibias were harvested. A long-term group (n=12) of C-G treated rats were also sacrificed at 6 months after the second surgery. The tissues were sonicated and the colony forming units in the sonicate were quantified by serial dilutions and culture. MicroCT was used to quantify the new bone growth (BV/TV) in the debrided osteomyelitic void. Histological samples were analyzed for the presence of a neutrophil response by a blinded pathologist. (*: p<0.05). Positive cultures in:. ○ 30% of animals treated with CBVF. ○ 25% of animals treated with no void filler. ○ 0% of animals treated with C-G (*). Neutrophil reaction in:. ○ 35% of animals treated with CBVF. ○ 50% of animals treated with no void filler. ○ 0% of animals treated with C-G (*). The BV/TV in:. ○ C-G treated rats was 24% greater than CBVF treated rats (*). ○ C-G treated rats was 94% greater than rats treated with no void filler (*). ○ CBVF treated rats was 56% greater than rats treated with no void filler (*). Animals sacrificed at 6 months which were treated with C-G did not have any evidence of infection by culture or histology. The bone mass of the implanted limb was higher than the contralateral (non-operated) side. CERAMENT|G decreased the rate of infection and increased new bone growth as compared with both CBVF and no void filler in a debrided osteomyelitic environment. Animals treated with C-G at 6 months showed no evidence of infection and retained a higher bone mass relative to the contralateral (non-operated) side. This study supports the use of CERAMENT|G as a readily available void filler which could be used in osteomyelitic environments after debridement


Bone & Joint Research
Vol. 4, Issue 5 | Pages 84 - 92
1 May 2015
Hamamura K Nishimura A Iino T Takigawa S Sudo A Yokota H

Objectives

Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA).

Methods

OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O.