Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 1 - 1
1 Jan 2017
Erani P Baleani M
Full Access

Good lag screw holding power in trabecular bone of the femoral head is a requisite to achieve stability in the management of proximal femoral fractures. It has been demonstrated that insertion torque and pullout strength of lag screw are linearly correlated. Therefore, insertion torque measurement could be a method to estimate the achieved screw purchase. Manual perception is not reliable [1], but the use of an instrumented screwdriver would make the procedure feasible. The aim of this study was to assess the accuracy achievable using the insertion torque as predictor of lag screw purchase. Four different screw designs (two cannulated and two solid-core screws) were investigated in this study. Each screw was inserted into a block of trabecular bone tissue following a standardised procedure designed to maximise the experimental repeatability. The blocks of trabecular tissue were extracted from human as well as bovine femora to increase the range of bone mineral density. The prediction accuracy was evaluated by plotting pullout strength versus insertion torque, performing a linear regression analysis and calculating the difference (as percentage) between predicted and measured values. Insertion torque showed a strong linear correlation (coefficient of determination R. 2. : 0.95–0.99) with the pullout strength of lag screw. However the prediction error in pullout strength estimation was greater than 40% for small values of insertion torque, decreasing down to 15% when the lag screw was driven into good quality bone tissue. Measuring insertion torque can supply quantitative information about the achieved lag screw purchase. Since screw design and insertion procedure have been shown to affect both the insertion torque and the pullout strength [2], the prediction model must be screw-specific and determined, closely simulating the clinical procedure defined by the screw manufacturer. However, the surgeon must be aware that, even under highly repeatable experimental conditions, the prediction error was found to be high when small insertion torque was measured, i.e. when the screw was driven in low quality bone tissue. Therefore, insertion torque is not reliable in evaluating lag screw purchase in the management of proximal femur fracture of osteoporotic patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 91 - 91
1 May 2017
Karakasli A Sekik E Karaaslan A Ertem F Kızmazoğlu C Havitcioglu H
Full Access

Background. While the biomechanical properties of trans-pedicular screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of trans-pedicle screws in comparison to different distal terminal constructs like sublaminar hooks alone, trans pedicular screws with sublaminar hooks and clow hooks alone in the thoracolumbar spine surgery. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of four different distal terminal constructs in thoracolumbar spine surgery. Methods. 32 fresh-frozen lamb spines were used. The lamb spines were divided into four groups, each group is composed of eight lamb spine cadavers with a different distal fixation pattern was used to terminate the construct at L1. (Group 1) trans-pedicular screws alone, (Group 2) sublaminar hooks alone, (Group 3) trans-pedicular screws augmented with a sublaminar hooks via a domino connector and (Group 4) clow hooks alone. Results. The average pullout strength of group 1 was 927N, group2 was 626N, group 3 was 988N and group 4 was 972N. Group 3 and 4 showed the most significant pullout forces when compared to group 1 and group 2. However Group 3 and group 4 didn't show any significant statistical difference when compared to each others. Conclusion. Our study thus suggests that the strongest construct that may reduce the pullout phenomina in the distal fixation constructs are the trans-pedicular screw with laminar hooks. It is strongly advised to be used in osteoporotic bones and in conditions where pullout strength is required to be enhanced. But farther prospective clinical studies are needed to clearly demonstrate the beneficial effect of a trans-pedicular screw augmented with a laminar hooks in reducing the risk of distal instrumentation pullout. Level of Evidence. Level 5. Disclosure. The authors declare that no conflict of interests were associated with the present study


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 123 - 123
1 Nov 2018
Moon J Jung Y Lee J
Full Access

Suture anchor have been used in surgical procedure of tendon or ligament repair. Recently, there has been developed an all suture anchor (soft anchor) which can be used even when the insertion area is narrow. But, the stability of soft anchors due to narrow zone has not been elucidated. This purpose of this study was to investigate stability of soft anchors with respect to their fixation intervals. Polyurethane foams with two different bone densities (10 pcf; 0.16g / cm³, 20 pcf; 0.32g / cm³) were used. All suture anchors and conventional suture anchors were fixed at 10mm, 5mm, and 2.5mm intervals. The failure load was measured using a mechanical testing machine. The average load to failure of conventional suture anchor were 200.4N, 200.2N, 184.7N in the 10mm, 5mm and 2.5mm interval with 10pcf foam bones and 200.4 N, 200.2 N and 184.7 N with the 20 pcf foam bone respectively. Average load to failure load of soft anchor was 97.3N, 93.9N and 76.9N with 10pcf foam bones and 200.4 N, 200.2 N and 184.7 N with 20 pcf foam bone. Suture screw spacing and bone density are important factors in anchor pullout strength. In osteoporotic bone density, insertion of the suture screw interval of 5 mm might be necessary


Bone & Joint Research
Vol. 1, Issue 9 | Pages 218 - 224
1 Sep 2012
Tabuchi K Soejima T Kanazawa T Noguchi K Nagata K

Objectives. The purpose of this study was to evaluate chronological changes in the collagen-type composition at tendon–bone interface during tendon–bone healing and to clarify the continuity between Sharpey-like fibres and inner fibres of the tendon. Methods. Male white rabbits were used to create an extra-articular bone–tendon graft model by grafting the extensor digitorum longus into a bone tunnel. Three rabbits were killed at two, four, eight, 12 and 26 weeks post-operatively. Elastica van Gieson staining was used to colour 5 µm coronal sections, which were examined under optical and polarised light microscopy. Immunostaining for type I, II and III collagen was also performed. Results. Sharpey-like fibres comprised of type III collagen in the early phase were gradually replaced by type I collagen from 12 weeks onwards, until continuity between the Sharpey-like fibres and inner fibres of the tendon was achieved by 26 weeks. Conclusions. Even in rabbits, which heal faster than humans, an observation period of at least 12 to 26 weeks is required, because the collagen-type composition of the Sharpey-like fibre bone–tendon connection may have insufficient pullout strength during this period. These results suggest that caution is necessary when permitting post-operative activity in humans who have undergone intra-bone tunnel grafts


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 84 - 84
1 Apr 2018
Moon J Kim J Jung H
Full Access

Introduction. Suture anchor have been used in surgical procedure of tendon or ligament repair. Recently, there has been developed an all suture anchor (soft anchor) which can be used even when the insertion area is narrow. But, the stability of soft anchors due to narrow zone has not been elucidated. This purpose of this study was to investigate stability of soft anchors with respect to their fixation intervals. Methods. Polyurethane foams with two different bone densities (10 pcf; 0.16g / cm³, 20 pcf; 0.32g / cm) were used. All suture anchors and conventional suture anchors were fixed at 10mm, 5mm, and 2.5mm intervals. The failure load was measured using a mechanical testing machine. Results. The average load to failure of conventional suture anchor were 97.3N, 93.9N, and 76.9N in the 10mm, 5mm and 2.5mm interval with 10pcf foam bones and 200.4 N, 200.2 N and 184.7 N with the 20 pcf foam bone respectively. Average load to failure load of soft anchor was 97.3N, 93.9N and 76.9N with 10pcf foam bones and 200.4 N, 200.2 N and 184.7 N with 20 pcf foam bone. Conclusion. Suture screw spacing and bone density are important factors in anchor pullout strength. In osteoporotic bone density, insertion of the suture screw interval of 5 mm might be necessary


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 38 - 38
1 May 2017
Ertem F Havıtçıoğlu Ç Erduran M Havıtçıoğlu H
Full Access

Background. The advantages of treatment by open reduction and internal fixation for intertrochanteric fractures of the proximal femur have been well known for several decades. Failure of fixation can result in revision surgery, prolonged inpatient stay and has major socio-economic consequences. There are many new devices on the market to help deal with this problem. Expandable hip screw (EHS) is one such device, which is an expanding bolt that may offer superior fixation in osteoporotic bone compared to the standard dynamic hip screw (DHS) type device. Methods. Static axial compression tests with elastic deformation of the specimens were performed with a crosshead speed of 10 mm/min to determine stiffness of testing was performed with 3 cycles from 0 N to 250 N, 3 cycles from 0 N to 500 N, 3 cycles from 0 N to 750 N and 3 cycles from 0 N to 1000 N with a holding time of 10 s per test cycle. Displacement control was apply the pullout strength with a velocity of 1mm/sec. The ability to resist rotation about the axis of a lag screw is of critical importance particularly when the fracture line is perpendicular, or nearly perpendicular, to the femoral neck. Implants were subjected to a rotation of 1 degree/sec and peak torque values were recorded. Results. The mean axial cyclic loading DHS showed higher stiffness value than EHS. The mean stiffness achieved at pullout test in the EHS and DHS groups were 587.8N/mm and, 334.1N/mm respectively (p<0.05). The peak torque for the EHS device was significantly greater than the torque for the DHS with torque values of 4.56 Nm/degree and 2.97 Nm/degree, respectively (p<0.05). Conclusions. The EHS device demonstrated superior resistance to pullout and torsion greater loads compared to the DHS in an unstable fracture model. However, axial cyclic loading demonstrate lower strength, by optimising the size of device will perform. Level of Evidence. Level 5


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 76 - 76
1 Jul 2014
Thakkar S Langdale E Mears S Belkoff S
Full Access

Summary. A rotational limit for screw insertion may improve screw purchase and plate compression by reducing stripping, as compared to a torque based limit. Introduction. Over-tightening screws results in inadvertent stripping of 20% of cortical bone screws. The current method of “two-fingers tight” to insert screws relies on the surgeon receiving torque feedback. Torque, however, can be affected by screw pitch, bone density and bone-thread friction. An alternative method of tightening screws is the “turn-of-the-nut” model, commonly used in engineering applications. In the “turn-of-the-nut” method, nuts used to fasten a joint are rotated a specific amount in order to achieve a pre-specified bolt tension. When applied to orthopaedics, bone assumes the role of the nut and the screw is the bolt. The screw is turned a set angular rotation that is independent of torque feedback. Potentially the “turn-of-the-nut” method provides an easier way of screw insertion that might lessen inadvertent screw stripping. The purpose of the current study was to use the “turn-of-the-nut” method to determine the angular rotation that results in peak plate compression and peak screw pullout force. Methods. Three pairs of human humeri in each of three groups (osteopenic, osteoporotic, and normal) underwent plate compression and pullout protocols. For plate compression, 3.5-mm screws were tightened into strain gauge instrumented plate until screw stripping occurred. Insertion torque, plate compression, and screw rotation were measured. For pullout, 3.5-mm screws were inserted until the head contacted the plate, additionally rotated (90, 180, 270, or 360 degrees), and then pulled out. A generalised linear and latent mixed model was used to check for significant associations (P < 0.05). Results. Mean (95% CI) peak plate compression occurred at 286 degrees (range, 261 – 311 degrees) beyond screw seating. Plate compression significantly increased at 90 to 135 degrees but not after 180 degrees. At 270 degrees, 39% of the screws had already reached their peak ability to compress. Peak screw torque lagged behind peak plate compression by 31 ± 50 degrees, and in seeking peak screw torque, a loss of 104 ± 115 N in plate compression resulted. Screw pullout force was greatest at 90 degrees, but it was not significantly different from that of the other angle groups. Conclusions. Screw rotation at 180 degrees provides plate compression and pullout strength statistically similar to those at greater rotations but without the loss of purchase associated with greater rotations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 100 - 100
1 Aug 2012
Coathup M Shawcross J Scarsbrook C Korda M Hanoun A Pickford M Agg P Blunn G
Full Access

Introduction. A modified anodisation technique where a titanium surface releases bactericidal concentrations of silver was developed and called Agluna. Our hypothesis was that silver incorporation was bactericidal and had no effects on the viability of fibroblasts and osteoblasts, would have no negative effect on interfacial shear strength and bone contact in an in vivo trans-cortical implant ovine model. Methods. In vitro: Titanium alloy discs were either polished (Ti), anodised (Ano), anodised or Agluna treated (Ag) or anodised and Agluna treated followed by a conditioning step (Ag C). Conditioning was achieved by incubating discs in culture fluid for 48 hrs. The bactericidal effect of these discs was tested by measuring the zone of inhibition of different bacteria grown on agar. Live/dead staining was carried out and silver levels measured using atomic emission spectroscopy. 8 implants were inserted into each sheep (60 in total (n=5)). Grit blasted Titanium alloy (Gb) and Agluna treated grit blasted titanium alloy (Ag) at a silver concentration of 4-6 micrograms/cm2 were compared at 6 weeks. Gb implants, Ag (at 4-6micrograms/cm2), high dose Agluna implants with silver concentrations at 15-20micrograms/cm2 (HdAg) and a grit blasted anodised titanium alloy (Ano) were compared at 12 weeks. Pullout strength and bone-implant contact was quantified. Results. On Ti, Ano and Ag C surfaces the number of live fibroblasts was significantly greater than on Ag (non-conditioned) surfaces. Data from pull out tests at 6 weeks showed a lower but significant interfacial shear strength in the Ag group (310.4N) when compared with the Gb group (561.2N) (p=0.01). At 12 weeks, there were no significant differences between each of the 4 treatment groups. Histological analysis showed no significant differences in bone-implant contact between groups at 6 and 12 weeks. Discussion. The initial non-conditioned Agluna surface is bactericidal and cytotoxic but on conditioning, osteoblasts and fibroblasts attached and remained viable. The condition Agluna surface remains bactericidal. Silver incorporation at a concentration up to 20 micrograms/cm2 has no adverse toxic effect on osteointegration and the interfacial shear strength of implants. This coating has been used clinically in situations where the infection rate is high


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 103 - 106
1 Jan 2008
Kettler M Tingart MJ Lunger J Kuhn V

Operative fixation is the treatment of choice for a rupture of the distal tendon of biceps. A variety of techniques have been described including transosseous sutures and suture anchors. The poor quality of the bone of the radial tuberosity might affect the load to failure of the tendon repair in early rehabilitation.

The aim of this study was to determine the loads to failure of different techniques of fixation and to investigate their association with the bone mineral density of the radial tuberosity.

Peripheral quantitative computed tomography was carried out to measure the trabecular and cortical bone mineral density of the radial tuberosity in 40 cadaver specimens. The loads to failure in four different techniques of fixation were determined.

The Endobutton-based method showed the highest failure load at 270 N (sd 22) (p < 0.05). The mean failure load of the transosseous suture technique was 210 N (sd 66) and that of the TwinFix-QuickT 5.0 mm was 57 N (sd 22), significantly lower than those of all other repairs (p < 0.05). No significant correlation was seen between bone mineral density and loads to failure.

The transosseous technique is an easy and cost-saving procedure for fixation of the distal biceps tendon. TwinFix-QuickT 5.0 mm had significantly lower failure loads, which might affect early rehabilitation, particularly in older patients.