Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle.
Introduction: Conventional cancellous screws have proven purchase in healthy bone, but may be prone to loosening in osteoporotic bone. Locking screws have become a popular choice to combat loosening. A new screw design has optimized thread form to gain better purchase into poor quality bone. The purpose of this study was to evaluate the maximum stripping torque and
Introduction: There has been a renewed interest in metal-on-metal bearing for total hip replacement with the benefit of a larger head size and decreased incidence of dislocation. In the revision hip scenario cementation of a polyethylene liner, for a previously compromised liner fixation mechanism into a preexisting well-fixed shell or a cage, has become an accepted method to decrease the morbidity of the procedure. Perhaps Bir-mingham cementless cups could be used as cemented devices in primary and revision hip surgery where a cementless cup is not possible. Aim: To study the
We aimed to determine the optimal method of inserting a screw into polymethylmethacrylate (PMMA) cement to enhance fixation. We performed six groups of ten axial pull-out tests with two sizes of screw (3.5 and 4.5 mm AO cortical) and three methods of insertion. Screws were placed into 'fluid' PMMA, into 'solid' PMMA by drilling and tapping, or into 'curing' PMMA with quarter-revolution turns every 30 seconds until the PMMA had hardened. After full hardening, we measured the maximum load to failure for each screw-PMMA construct. We found no significant difference in the
The effect of screw geometry on the pullout strength of Anterior Cruciate Ligament [ACL] reconstruction is well documented. Most research has looked at the effect of screw length and diameter, however other factors such as the degree of taper may also be important. Tapered screws should in theory be associated with increased pullout strength. This has not been demonstrated either clinically or in vitro before. The aim of this study was to compare the pullout strength of ACL reconstruction with a parallel against a tapered screw. A parallel and tapered screw were manufactured which were identical in all other respects. Sixty superficial digital flexors from the hind legs of sheep were harvested. The tendons were paired and combined to form a quadruple tendon reconstruction of approximately 7mm diameter as measured with graft sizer. An ACL reconstruction was performed on the proximal tibia of 30 bovine knees, which had been harvested in right and left knee pairs, using the quadruple tendon. Fifteen reconstructions were fixed using tapered screws and fifteen with non-tapered screws. The insertion torque of both tapered and non tapered screws were recorded using an instrumented torque screwdriver. The reconstructions were mounted in an Instron materials testing machine with an x-ray bearing system to eliminate horizontal forces, to ensure that the forces were all directed along the line of the tibial tunnel. The maximum pullout strengths were recorded in each case. Five knee pairs were subjected to bone densitometry scanning to ensure that any difference in pull out strength was not due to changes in bone density between right and left knee pairs. Results indicated that there was no difference between right and left knee pairs [p = 0.58] and that tapered screws were associated with significantly higher
Fixation of the glenoid component is critical to the outcome of total shoulder arthroplasty. In an in vitro study, we analysed the effect of surface design and thickness of the cement mantle on the
Introduction: Knotless Suture Anchors provide numerous advantages in arthroscopic rotator-cuff (RC) repair such as, reducing the difficulties of knot tying, reducing surgical exposure, thus decreasing morbidity. The purpose of this in-vitro study was to compare the
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak
Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads. Results. Experimental
Complications after spinal fusion surgery are common, with implant loosening occurring in up to 50% of osteoporotic patients. Pedicle screw fixation strength reduces as a result of decreased trabecular bone density, whereas sublaminar wiring is less affected by these changes. Therefore, pedicle screw augmentation with radiopaque sublaminar wires (made with Dyneema Purity® Radiapque fibers, DSM Biomedical, Geleen, the Netherlands) may improve fixation strength. Furthermore, sublaminar tape could result in a gradual motion transition to distribute stress over multiple levels and thereby reduce implant loosening. The objective of this study is to test this hypothesis in a novel experimental setup in which a cantilever bending moment is applied to individual human vertebrae. Thirty-eight human cadaver vertebrae were stratified into four different groups: ultra-high molecular weight polyethylene sublaminar tape (ST), pedicle screw (PS), metal sublaminar wire (SW) and pedicle screw reinforced with sublaminar tape (PS+ST). The vertebrae were individually embedded in resin, and a cantilever bending moment was applied bilaterally through the spinal rods using a universal material testing machine. This cantilever bending setup closely resembles the loading of fixators at transitional levels of spinal instrumentation. The
Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean
Surgeons treating fractures with many small osteochondral fragments have often expressed the clinical need for an adhesive to join such fragments, as an adjunct to standard implants. If an adhesive would maintain alignment of the articular surfaces and subsequently heal it could result in improved clinical outcomes. However, there are no bone adhesives available for clinical indications and few pre-clinical models to assess safety and efficacy of adhesive biomaterial candidates. A bone adhesive candidate based on water, α-TCP and an amino acid phosphoserine was evaluated in-vivo in a novel murine bone core model (preliminary results presented EORS 2019) in which excised bone cores were glued back in place and harvested @ 0, 3, 7, 14, 28 and 42days. Adhesive
Purpose: The purpose of our work was to assess sutures, suturing techniques, and suture anchors used in rotator cuff surgery in order to explore weak parts in our repair. Material and Methods: Ten types of sutures, four types of suturing techniques and eight types of sutures anchors commonly used in shoulder surgery were tested. Vicryl, Ticron, Dexon, PDS, Panacryl, Ethibond, Durabraid, Fiberwire, HiFi and Orthocord sutures were tested. Simple, mattress, massive cuff tear (MCT) technique and modified Mason Allen. (MMA) suturing technique in ex-vivo ovine healthy rotator cuff were tested. Four metallic and four bioabsorbable anchors: Arthrex, Smith+Nephew, Linvatec, Mitek and bio respectively were tested. Their
Currently available fracture fixation devices that were originally developed for healthy bone are often not effective for patients with osteoporosis. Resulting outcomes are unsatisfactory, with longer recovery times, often requiring re-surgery for failed cases. One major issue is the design of bone screws, which can loosen or pull-out from osteoporotic bone. Design improvements are possible, but the development of new screws is a lengthy and expensive process due to the manufacture of the complex geometry involved. The aim of this research was to validate our currently available 3D printing technology in the design, manufacture and testing of screws. Three standard wood screw designs were reverse-engineered using computational modelling and then fabricated in polymeric resin using 3D rapid prototyping on a Stereolithography (SLA) machine. The original metal screws and the 3D screws (n=5 of each) were then inserted into a synthetic bone block (Sawbones, PCF5) representing the mechanical properties of severely osteoporotic cancellous bone. Pull-out tests were conducted in accordance with ASTM 543-13. The three metal screws exhibited
Introduction: The use of self-tapping screws has become increasingly popular since it allows for a rapid screw placement avoiding the tapping step during ORIF of fractures.. While sharing the same basic principle of cutting flutes and partial threads at the tip, at least four types of screw design is currently available, varying in the number and shape of cutting flutes. The purpose of this biomechanical study was to research for any significant difference between the various self-tapping screws. Material and Methods: Three different designs of 4.5-mm self-tapping screws and one standard 4.5 screw serving as control were compared for
The menisci function within the knee as load distributors, shock absorbers and secondary stabilisers. The medial meniscus has been shown to carry as much as 50% of the load across the medial compartment, and the lateral meniscus 70% of its compartmental load. After total meniscectomy, joint contact areas decrease by approximately 75%, and peak local contact stresses increase by as much as 235%. Meniscectomy may lead to a 14 times increase in the risk of arthritis at 20 years. Axial load across the knee is converted into hoop stresses along the circumferential collagen fibres within the meniscus. Strong and stiff attachment of both meniscal horns, via the insertional ligaments, to the tibia is essential. Disruption of the circumferential fibre arrangement will defunction the meniscus. Preservation of meniscal tissue, where possible and appropriate, is now accepted practice. Most techniques for meniscal repair have been validated in vitro by testing radial
The intermittent administration of parathyroid hormone (PTH) increases the formation of bone by stimulating osteoblastic activity. Our study evaluates the possibility that intermittent treatment with PTH (1-34) may also enhance the implant-bone fixation of stainless-steel screws. Twenty-eight rats received one screw in either one (n = 8) or in both (n = 20) proximal tibiae. We administered either PTH (1-34) in a dosage of 60 μg/kg/day (n = 14) or vehicle (n = 14) over a period of four weeks. At the end of this time, the degree of fixation was assessed by measuring the removal torque on one screw in each rat (n = 28) and the
Clinically applied methods of assessing implant fixation and implant loosening are of sub-optimal precision, leading to the risk of unsecure indication of revision surgery and late recognition of bone defects. Loosening diagnosis involving measuring the eigenfrequencies of implants has its roots in the field of dentistry. The changing of the eigenfrequencies of the implant-bone-system due to the loosening state can be measured as vibrations or structure-borne sound. In research, vibrometry was studied using an external shaker to excite the femur-stem-system of total hip replacements and to measure the resulting frequencies by integrated accelerometers or by ultrasound. Since proper excitation of implant components seems a major challenge in vibrometry, we developed a non-invasive method of internal excitation creating an acoustic source directly inside the implant. In the concept proposed for clinical use, an oscillator is integrated in the implant, e.g. the femoral stem of a total hip replacement. The oscillator consists of a magnetic or magnetisable spherical body which is fixed on a flat steel spring and is excited electromagnetically by a coil placed outside the patient. The oscillator impinges inside the implant and excites this to vibrate in its eigenfrequency. The excitation within the bending modes of the implant leads to a sound emission to the surrounding bone and soft tissue. The sound waves are detected by an acoustic sensor which is applied on the patient's skin. Differences in the signal generated result from varying level of implant fixation. The sensor principle was tested in porcine foreleg specimens with a custom-made implant. Influence of the measurement location at the porcine skin and different levels of fixation were investigated (press-fit, slight loosening, advanced loosening) and compared to the
There are several different ways of preparing the femoral canal prior to cementing a hip prosthesis. This study investigated the mechanical strength of the cement-bone interface of four different types of preparation determined by the maximum tensile force required to separate a cemented prosthesis from its cancellous bone origin. Forty-eight fresh-frozen ox femora were prepared for hip arthroplasty, In a four-way comparison, groups of eleven femora were prepared by irrigation using. syringe injected normal saline;. hydrogen-peroxide soaked gauze;. pulse-lavage brushing; and. pulse-lavage brushing and hydrogen-peroxide soaked gauze combination. Specimens were secured to a Material-test System (MTS), and the femoral implant pulled from the femur uni-axially at a rate of 5mm/min. The ‘pull-out strength’ was defined as the maximum tension recorded by the MTS during separation. Cement interdigitation was also inspected for each technique by microscopy of eight bone-implant transverse sections taken from prepared specimens. Following an analysis of variance and pair-wise Fisher comparison, the average
To assess the current literature on suture anchor placement for the purpose of identifying factors that lead to suture anchor perforation and techniques that reduce the likelihood of complications. Three databases (PubMed, Ovid MEDLINE, EMBASE) were searched, and two reviewers independently screened the resulting literature. Methodological quality of all included papers was assessed using Methodological Index for Non-Randomized Studies criteria and the Cochrane Risk of Bias Assessment tool. Results are presented in a narrative summary fashion using descriptive statistics. Fourteen studies were included in this review. Four case series (491 patients, 56.6% female, mean age 33.9 years), nine controlled cadaveric/laboratory studies (111 cadaveric hips and 12 sawbones, 42.2% female, mean age 60.0 years), and one randomized controlled trial (37 hips, 55.6% female, mean age 34.2 years) were included. Anterior cortical perforation by suture anchors led to pain and impingement of pelvic neurovascular structures. The anterior acetabular positions (three to four o'clock) had the thinnest bone, smallest rim angles, and highest incidence of articular perforation. Drilling angles from 10° to 20° measured off the coronal plane were acceptable. The mid-anterior (MA) and distal anterolateral (DALA) portals were used successfully, with some studies reporting difficulty placing anchors at anterior locations via the DALA portal. Small-diameter (< 1 .8-mm) suture anchors had a lower in vivo incidence of articular perforation with similar stability and