Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 179 - 179
1 Sep 2012
Spangehl MJ Clarke HD
Full Access

Introduction. Opponents of patellar resurfacing during Total Knee Arthroplasty (TKA) note unique complications associated with resurfacing. Problems include over-stuffing (the creation of a composite patellar-prosthesis thickness greater than the native patella) that may contribute to reduced range of motion; and creation of a patellar remnant that is too thin (in order to avoid over-stuffing) that may contribute to post-operative fracture. Factors including surgical technique, prosthesis design and patient anatomy may contribute to these problems. This study was performed to define the native patellar anatomy, and to compare the effect of differences in component thickness between manufacturers. Methods. This retrospective, IRB approved study reviewed 803 knees that underwent primary TKA between 2005 and 2011 with a single surgeon. Patellar resurfacing was performed with a round, polyethylene component from one of two different implant designs using the same surgical technique. Data recorded for each patient included: gender; patellar thickness before and after resurfacing; the dimensions and manufacturer of the prosthesis. The residual patellar bone thickness after resection was calculated. Results. Mean (SD) native patellar thickness was 25.24mm (2.11) in males, versus 22.13mm (1.89) in females (P = <0.001). 47/313 (15%) of males had increases in the composite patellar thickness after resurfacing, versus 120/480 (25%) of females (P < 0.001). 123/480 (26%) of females had a residual patella thickness <= 13mm, versus 12/313 (4%) of males (P <0.001). Finally, 79/265 (30%) of patients with a patellar prosthesis from manufacturer B had increases in the composite thickness, versus 88/522 (17%) of patients with manufacturer A (P < 0.001). Conclusions. Both patient gender (due to smaller native patellae in females) and prosthesis design (thicker components from manufacturer B) are risk factors for over-stuffing of the patella or over-resection of the patella. These findings suggest that patellar component design can be improved for female patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 40 - 40
1 Mar 2013
Clarke H Spangehl MJ
Full Access

Introduction. Patellar resurfacing during Total Knee Arthroplasty (TKA) is controversial. Problems unique to patellar resurfacing may be influenced by available patellar component design. These issues include; over-stuffing (the creation of a composite patellar-prosthesis thickness greater than the native patella) that may contribute to reduced range of motion; and over-resection of the native patellar bone that may contribute to post-operative fracture. Prosthesis design may play a role in contributing to these problems. Component diameter and thickness are quite variable from one manufacturer to another and little information has been previously published about optimal component dimensions. This anatomic study was performed to define the native patellar anatomy of patients undergoing TKA, in order to guide future component design. Methods. This retrospective, IRB approved study reviewed 797 Caucasian knees that underwent primary TKA by a single surgeon. Data recorded for each patient included: gender; patellar thickness before and after resurfacing, and the size of the component that provided the greatest patellar coverage without any overhang. The residual patellar bone thickness after resection was also calculated. Results. Mean (SD) native patellar thickness was 25.24 mm (2.11) in males, versus 22.13 mm (1.89) in females (P = <0.001). 84 of 483 females (17 %) had a native patellar thickness less than or equal to 20 mm. Only 3 male patients had a native patellar thickness less than or equal to 20 mm (1%). 374 females (78%) could only accommodate a round patellar button less than or equal to 32 mm. Conclusions. These findings suggest that patellar component design can be improved for Caucasian female patients. Round components between 26 and 32 mm that measure no more than 7 mm thick would be required to avoid systematic over-stuffing or over-resection of the native patellar in female patients. Most contemporary knee systems do not meet these needs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 83 - 83
1 May 2016
Christiansen J Nielsen P Laursen M Blunn G
Full Access

Introduction

The Primoris® femoral stem was designed to preserve bone and maintain normal stress to the proximal femur, thereby minimizing stress-shielding. The implant is anchored in the femoral neck and metaphysis without diaphysial involvement and differs from other neck prothesis by: a) Elliptical shape to fit the inner neck dimensions. b) On top of Ti– porous-coating electrochemically deposited hydroxy apatite (Bonemaster®) c) The surgical technique aims to enhance initial implant stability by compaction of neck and metaphyseal cancellous bone.

Objectives

As part of stepwise introduction to monitor bone remodeling, RSA data and clinical results.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 10 - 10
1 Jun 2021
Van Tienen T Defoort K van de Groes S Emans P Heesterbeek P Pikaart R
Full Access

Introduction. Post-meniscectomy syndrome is broadly characterised by intractable pain following the partial or total removal of a meniscus. There is a large treatment gap between the first knee pain after meniscectomy and the eligibility for a TKA. Hence, there is a strong unmet need for a solution that will relieve this post-meniscectomy pain. Goal of this first-in-man study was to evaluate the safety and performance of an anatomically shaped artificial medial meniscus prosthesis and the accompanying surgical technique. Methods. A first-in-man, prospective, multi-centre, single arm clinical investigation was intended to be performed on 18 post-medial meniscectomy syndrome patients with limited underlying cartilage damage (Kellgren Lawrence scale 0–3) in the medial compartment and having a normal lateral compartment. Eventually 5 patients received a polycarbonate urethane mediale meniscus prosthesis (Trammpolin® medial meniscus prosthesis; ATRO Medical B.V., the Netherlands) which was clicked onto two titanium screws fixated at the native horn attachments on the tibia. PROMs were collected at baseline and at 6 weeks, 3, 6, 12 and 24 months following the intervention including X-rays at 6, 12 and 24 Months. MRI scans were repeated after 12 and 24 months. Results. The surgical technique to select the appropriately sized implant and correct positioning of the fixation screws and meniscus prosthesis onto the tibia was demonstrated feasible and reproducible. The surgeries showed that in particular the positioning of the posterior screw is crucial for correct positioning of the prosthesis. Inclusion stopped after 5 patients, who reached the 6 months evaluation. The PROMs did not improve in the first 6 months after surgery. All patients reported knee joint stiffness and slight effusion in their knee at 6 months follow-up. In case of symptomatic patients an evaluation of the device position and integrity was performed by MRI. In three patients the implants were removed because of implant failure and in one patient the implant was removed because of persistent pain and extension deficit. At present one patient has the implant still in situ. The explantations of the implants demonstrated no articular cartilage damage and the fixation screws were securely anchored. Discussion. This is the first clinical study with an artificial meniscus-like prosthesis. Except one, all implants were removed due to implant breakage or discomfort of the patient. Analysis of the torn implants showed fatigue failure resulting from the lack of loadsharing between implant and cartilage: the implant was too stiff and carried all the load in the medial compartment of the knee. Furthermore, the fixation with screws seemed too rigid which restricted the motion of the posterior horn. Based on previous in vitro and animal experiments, we expected more creep of the material and more motion on the screw fixation. Conclusion. This first-in-man clinical study demonstrates that the investigated device design is not safe and did not perform as expected. Therefore, modification of the meniscus prosthesis design and fixation technique is required to allow for more motion of the meniscus prosthesis during knee joint movement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 56 - 56
1 Feb 2020
Broberg J Howard J Lanting B Vasarhelyi E Yuan X Naudie D Teeter M
Full Access

Introduction. Surgeons performing a total knee replacement (TKR) have two available techniques available to help them achieve the proper bone resections and ligament tension – gap balancing (GB) and measured resection (MR). GB relies on balancing ligaments prior to bony resections whereas bony resections are made based on anatomical landmarks in MR. Many studies have been done to compare the joint kinematics between the two techniques, however the results have been varied. These studies were not done with anatomically designed prostheses. The Journey II (Smith & Nephew, Memphis, TN) is one such design which attempts to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Given the design differences between anatomical and non-anatomical prostheses, it is important to investigate whether one technique provides superior kinematics when an anatomical design is used. We hypothesize that there will be no difference between the two techniques. Methods. A total of 56 individuals were recruited to receive a Journey II prosthesis and randomized evenly to groups where the GB technique or MR technique is used. For all patients in the study, a series of radiostereometric analysis (RSA) images were acquired at 3-months post-operatively at different knee flexion angles, ranging in 20° increments from 0° to 120°. Model-based RSA software (RSACore, Leiden, Netherlands) was used to obtain the 3D positions and orientations of the femoral and tibial implant components, which were in turn used to obtain kinematic measures (contact locations and magnitude of excursion) for each condyle. Results. Preliminary results for the anterior-posterior (AP) contact locations from 33 patients (18 GB, 15 MR) are displayed in Figure 1. There were no significant differences in medial and lateral contact locations between the GB and MR groups for all angles of flexion. However, the pattern of medial contact for the MR technique displays more paradoxical anterior motion at mid-flexion (40°–60°) than the GB group. There were no significant differences in magnitude of excursion between groups on both medial (mean difference=1.96 mm, p=0.16) and lateral (mean difference=0.21 mm, p=0.79) condyles, indicating that posterior femoral rollback is similar between groups. Conclusions. Early results suggest that the MR technique is associated with slightly more abnormal kinematics than the GB technique when an anatomical prosthesis design is used for TKR. The GB technique may be more appropriate than MR technique for implanting anatomically designed knee replacements. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 134 - 134
1 May 2016
Plachel F Heuberer P Schanda J Pauzenberger L Anderl W
Full Access

Background. The use of reverse total shoulder arthroplasty considerably increased since first introduced by Paul Grammont in the late 1980s. Over the past few years, results from several mid- and long-term clinical studies have demonstrated good functional outcomes and pain relief. However, several complications, especially inferior glenoid notching, and high revision rates were reported in the literature. Improvements in prosthesis design should contribute to a lower complication rate and lesser amount of glenoid erosion. Few studies have reported the clinical outcome andcomplications of Anatomical Shoulder Inverse/ Reverse Prosthesis. This study documents 2- and 6-year clinical and radiological results following reversed shoulder arthroplasty using this novel prosthesis. Methods. We report the results for sixty-eight consecutive patients (seventy shoulders) with cuff tear arthropathy (CTA) treated with Anatomical Shoulder Inverse/Reverse Prosthesis between 2006 and 2008. Two groups were defined: (A) primary treatment and (B) revision. Clinical evaluation tools comprised Constant-Murley score (CS), range of motion, and a visual analog scale to assess pain. Radiographs (anteroposterior view in neutral position) were evaluated for notching and radiolucent lines. Any complications were recorded. Results. In total, 66 shoulders (94%) with a mean follow-up of 30.0 months were initially analysed. CS increased from preoperatively 20.2 to postoperatively 53.6 points. Inferior scapular notching was identified in 58% of patients, primarily grade 1 and 2 (low-graded). 16% of patients experienced a complication, including instability, infection or periprosthetic fracture. 58 patients (83%) were re-evaluated 69.0 months after implantation. CS decreased to 50.2 points (n.s.). 16 patients (23%) had postoperative complication at final follow-up. We observed progressive radiographic changes in 75% and an increased frequency of large notches (grade 3 and 4). No significant difference regarding clinical outcome was detected between group A and B after both 2 and 6 years. Conclusion. Total shoulder arthroplasty with the Anatomical Shoulder Inverse/Reverse Prosthesis is a reliable treatment option in patients with cuff tear arthropathy. Primary and revision arthropathies result in similar improvements in range of motion and pain. Constant-Murley score and radiographic changes deteriorated with time. Inferior scapular notching appeared rapidly after implantation. A change of prosthesis design and prosthetic overhang intraoperatively seems to be the most effective way to prevent scapular conflict. The complication rate in our series is equally to previously reported rates


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2020
Fattori A Negro ND Gunsallus K Lipman J Hotchkiss R Figgie M Wright T Pressacco M
Full Access

Introduction. Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading. Methods. A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function). Results. All 5 samples withstood all 5.2M loading cycles without any mechanical failure. At the end of 5M cycles, each axle was still stable as the measured disassembly torque was 3.96 +/−0.18 Nm. Slight signs of fretting were detected on the tapered connection after 5M cycles, however they did not compromise the mechanical connection nor the stability. Discussion and Conclusions. Currently there are no reference standards that properly define protocols for biomechanical testing of elbow prostheses. In the present study, a test to mechanically assess the strength of an axle connection under both typical ADLs and HD loads was set. The connection was able to withstand the imposed conditions. In general, testing of TEA devices should include not only standard ADLs loads but also HD loads, which could be more detrimental for the long-term survivorship. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 90 - 90
1 May 2019
Lee G
Full Access

Total hip arthroplasty (THA) is effective, reproducible, and durable in the treatment of hip joint arthritis. While improvements in polyethylene materials have significantly reduced wear rates and osteolysis, aseptic loosening of implants remains one of the leading causes of revision THA. Additionally, fears of dislocation and instability have driven the increase in the utilization of larger diameter femoral heads in primary THA which can lead to increased wear when coupled with a polyethylene articulation. Finally, the increasing number of younger and active patients undergoing THA raises questions with regards to the ability of modern conventional bearings to provide durability and longevity beyond second and third decades following joint implantation. Ceramic-on-ceramic articulations are ideally suited for today's young and high demand patients undergoing primary THA. It has the lowest in-vitro wear properties of any bearing couple and the wear characteristics are further improved by its wettability and lubrication particularly when larger heads are utilised. Additionally, improvements in material properties and prosthesis design have significantly decreased fracture rates and increased the reliability of these implants. Furthermore, reported outcomes and longevity of modern ceramic-on-ceramic THAs in younger patients have all shown excellent survivorship despite patients achieving and maintaining a very high level of activity and function. In short, it is the bearing couple most in tune with current market demands and utilization trends. While registry data and meta-analyses of published literature have failed to show the superiority of ceramic-on-ceramic articulations compared to conventional bearings at 10 years, there is evidence that even highly crosslinked polyethylene (HXPE) is not immune to wear. Selvarajah et al. reported steady, in-vivo wear rates of HXPE exceeding 0.1mm/year threshold in young THA patients with 36mm ceramic ball heads. Additionally, small osteolytic lesions have been observed in hips with HXPE bearings at 12–14 years follow up. Finally, analysis of all controlled randomised studies have shown less osteolysis of ceramic-on-ceramic hips compared to polyethylene articulations. The significance of these lesions are unclear but the question remains: Can HXPE as a bearing be able to provide over 30 years of service needed to outlast patients younger than 60 years?. Concerns with cost, squeaking, and fractures do not make ceramic-on-ceramic bearings suitable for all patients undergoing primary THA. However, in young, healthy and active patients, a modern ceramic- on-ceramic articulation is most likely to provide the lowest wear rates, lowest risk of osteolysis, and greatest chance for life-long durability


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 62 - 62
1 Dec 2013
Gao B Angibaud L
Full Access

Introduction. Total knee arthroplasty (TKA) prostheses are semi-constrained artificial joints. A well-functioning TKA prosthesis should be designed with a good balance between stability and mobility, meaning the femorotibial constraint of the artificial joint should be appropriate for the device's function. To assess the constraint behavior of a TKA prosthesis, physical testing is typically required, and an industrial testing standard has been developed for this purpose [1]. Computer simulation has become increasingly useful in many industries, including medical device research and development where finite element analysis (FEA) has been extensively used in stress analysis and structural evaluation. This study presents an FEA-based simulation to evaluate the femorotibial constraint behavior of TKA prosthesis, and demonstrated the effectiveness of the method by validating through physical testing. Methods. A Cruciate Retaining (CR) TKA prosthesis design (Optetrak Logic CR, Exactech, USA) was used in this study. CAD models of the implants assembled at 0° of flexion were used for the simulation. Finite element models were generated using with all materials assumed linear elastic. Boundary conditions were set up according to the ASTM F1223 standard (Figure 1). The tibial baseplate was fixed distally. A constant compressive force (710 N) was applied on the femoral component. Nonlinear Surface-Surface-Contact was defined at the femorotibial articulating surfaces. Coefficient of friction was determined from physical test. The femoral component was driven under a displacement-controlled scheme to slide along the anterior-posterior (AP) direction on the tibial insert. At each time step, constraint force occurring at the articulating surface was derived from the reaction force at the distal fixation of the tibial baseplate. A nonlinear FEA solver (NX Nastran SOL601, Siemens, USA) was used to solve the simulation. In addition, five samples of the prostheses were physically tested, and the results were compared with the simulation. Results. The simulation successfully captured the movement of contact location and pressure along the movement of the femoral component (Figure 2). The force-displacement curve predicted by the simulation exhibited a very close hysteresis loop profile as the results of physical testing (Figure 3). Using the curve slope from 0 to 5 mm to characterize the linear constraint, the simulation predicted 45.7 N/mm anteriorly and 36.4 N/mm posteriorly, which are less than 10% different from the physical testing results (46.4 N/mm anteriorly and 39.6 N/mm posteriorly). Discussion/Conclusion. This study demonstrated that the simulation was able to closely predict the femorotibial constraint behavior of the TKA prosthesis under ASTM F1223 testing. The simulation results resembled the physical testing results not only in the general curve profile but also in the magnitude of slope values. The increased difference at the far anterior region could be related to the fact that no material nonlinearity was currently considered, which could be improved in future studies. A validated simulation method could be very useful in TKA prosthesis design. Since no physical prototypes are required, design evaluation and optimization can be achieved in a much easier and faster manner


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 2 - 2
1 Apr 2017
Lee G
Full Access

Total hip arthroplasty (THA) is effective, reproducible, and durable in the treatment of hip joint arthritis. While improvements in polyethylene materials have significantly reduced wear rates and osteolysis, aseptic loosening of implants remains one of the leading causes of revision THA. Additionally, fears of dislocation and instability have driven the increase in the utilization of larger diameter femoral heads in primary THA which can lead to increased wear when coupled with a polyethylene articulation. Finally, the increasing number of younger and active patients undergoing THA raises questions with regards to the ability of modern conventional bearings to provide durability and longevity beyond second and third decades following joint implantation. Ceramic-on-ceramic articulations are ideally suited for today's young and high demand patients undergoing primary THA. It has the lowest in-vitro wear properties of any bearing couple and the wear characteristics further improved by its wettability and lubrication particularly when larger heads are utilised. Additionally, improvements in material properties and prosthesis design have significantly decreased fracture rates and increased the reliability of these implants. Furthermore, reported outcomes and longevity of modern ceramic-on-ceramic THAs in younger patients have all shown excellent survivorship despite patients achieving and maintaining a very high level of activity and function. In short, it is the bearing couple most in tune with current market demands and utilization trends. While registry data and meta-analyses of published literature have failed to show the superiority of ceramic-on-ceramic articulations compared to conventional bearings at 10 years, there is evidence that even highly crosslinked polyethylene (HXPE) is not immune to wear. Selvarajah et al. reported steady, in-vivo wear rates of HXPE exceeding 0.1 mm/year threshold in young THA patients with 36 mm ceramic ball heads. Additionally, small osteolytic lesions have been observed in hips with HXPE bearings at 12–14 years follow up. Finally, analysis of all controlled randomised studies have shown less osteolysis of ceramic-on-ceramic hips compared to polyethylene articulations. The significance of these lesions are unclear but the question remains: Can HXPE as a bearing be able to provide over 30 years of service needed to outlast patients younger than 60 years?. Concerns with cost, squeaking, and fractures do not make ceramic-on-ceramic bearings suitable for all patients undergoing primary THA. However, in young, healthy and active patients, a modern ceramic-on-ceramic articulation is most likely to provide the lowest wear rates, lowest risk of osteolysis, and greatest chance for life-long durability


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 121 - 121
1 May 2016
Gaastra J Walschot L Visser C
Full Access

Background. Scapular notching causes glenoid bone loss after a reverse total shoulder arthroplasty (rTSA). The goal of this study was to assess the influence of prosthesis design on notching. Methods. Prospective, single surgeon cohort. Two different rTSA designs were consecutively implanted and compared: 25 Delta III rTSAs and 57 Delta Xtend rTSAs in 80 patients. Notching (Nerot 0–4) was assessed at 24 months follow-up. Patient dependent variables, surgical technique and implant geometry were assessed. Multivariate binary logistic regression was used to select the strongest independent predictors of notching. Results. The Delta III showed significantly more notching than the Delta Xtend: 72% and 23% respectively, p<0.001. The extent of notching was comparable. One patient (Delta III) needed revision for notching-associated glenoid loosening. Only 3 variables were significantly associated with notching in multivariate analysis: glenosphere overhang (R square 0.65), prosthesis-scapular neck angle (PSNA, R square 0.18) and humeral cup depth (R square 0.05), predicting 88% of notching cases. The corresponding odds ratios were 0.15 (95% CI 0.05–0.44) for 1 mm extra overhang, 8.4 (95% CI 2.0–35.6) for 10 degrees increase in PSNA and 7.6 (95% CI 1.3–43.3) for 1 mm extra cup depth. Surgical technique related variables, including peg-glenoid rim distance and PSNA, were comparable in both design groups. Conclusion. The key to prevent notching was to utilise the design features that maximise glenosphere overhang. Therefore, as a rule of thumb the baseplate should be positioned as inferior as possible. Minor contributions came from PSNA (patient anatomy/surgical technique) and polyethylene cup depth (also design). One patient required early revision for notching associated baseplate loosening. Long term follow-up is indicated to assess the effect of notching on prosthesis survival and outcome after revision


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 87 - 87
1 Apr 2017
Lombardi A
Full Access

Bi-cruciate-retaining (BCR) total knee arthroplasty (TKA), which retains both the anterior (ACL) and posterior cruciate (PCL) ligaments, serves as an alternative to the traditional TKA procedure. Despite the difficulty of ensuring the structural integrity of the prosthesis, the BCR TKA can yield improved patient outcomes such as range of motion, kinematics, and even the survivorship of the implant. When possible, BCR TKA can and should be considered as a viable option to treat end-stage arthritis of the knee. Reconsidering the frequency of the BCR TKA is necessary for several reasons. Patient outcomes following BCR TKA are similar to outcomes for mobile-bearing UKA. Patients with an intact ACL do better with preservation (UKA or BCR TKA) of the ACL. The corollary is also true that removing an intact ACL at the time of arthroplasty has worse outcomes than traditional TKA in patients with an absent ACL. Reported outcomes of BCR TKA include more normal knee function, excellent prosthetic survivorship, and greater patient satisfaction. The BCR TKA may provide a missing link in the continuum of constraint for primary knee arthroplasty. Many early BCR designs fell out of favor because of high rates of prosthetic loosening, and because the procedure was more technically demanding than that of highly successful ACL-sacrificing TKA devices. Recently there has been a reemergence of the BCR arthroplasty concept with improvements in design. By retaining both the ACL and PCL, BCR TKA patients show more normal knee function and flexibility due to anterior stability and replication of the physiological tension in the ACL. Modern BCR TKA models have improved upon early designs but are limited in use mainly due to the lack of an optimal prosthesis design and the relative difficulty of the surgical procedure. Bi-cruciate-retaining TKA is a viable procedure if an appropriate femorotibial gap can be created to mimic physiological tension of the ACL and PCL. In terms of the surgical technique, the procedure begins with femoral preparation to facilitate tibial preparation. Distal femoral resection is performed first taking care to avoid damage to the ACL. Femoral preparation is then completed with a four-in-one guide that incorporates a protector to ensure the ACL is not resected. Good exposure is essential to tibial preparation, which is the critical part of the procedure and involves several steps of setting the depth of resection, and making accurate cuts to protect the tibial eminence island of bone and set tibial component rotation. The medial and lateral tibial cuts must be absolutely parallel. Precise cement technique is required for the tibial baseplate, and care must be taken when trialing the dual bearings. Normal kinematics are preserved when both the ACL and PCL remain intact. Bi-cruciate-retaining TKA knees have been shown to restore more normal kinematics and have better “feel” than traditional ACL-sacrificing TKA knees. Bilateral TKA patients with designs of both types prefer their BCR TKA to their ACL-sacrificing TKA more often than not. An intact ACL has been shown to be present in 60–80% of arthritic knees, further justifying the consideration to retain both cruciate ligaments during TKA. New materials and refined instrumentation and techniques have helped improve the viability of BCR TKA, which may represent an additional option in the continuum of constraint for knee arthroplasty


Introduction. Dislocation due to suboptimal cup positioning is a devastating complication in the early phase after total hip arthroplasty. Malpositioning can also result in other mechanical complications like subluxation, edge loading, increased debris, surface damage or squeaking in ceramic-on-ceramic hips. Preventing at least some of these complications in younger and more active patients is of paramount interest for the individual patient and for the society since optimized component orientation is an important determinant to reduce such risks and to further increase longevity of the implant. This study reports on two new surgical instruments that help the orthopedic surgeon to manually place both components within the optimized combined safe-zone (cSafe-Zone). Material and Methods. More than 900 minimal-invasive total hip arthroplasties (MIS-THA) have been performed between 2007 and 2015 in our institution using the minimal-invasive direct anterior approach (DAA) on an orthopedic table with foot holder. Cups were implanted applying the “stem-first” surgical technique i.e. the prosthetic stem dictates the orientation of the socket depending on the prosthesis design. A system-specific trial head which indicates the prosthesis-specific relative orientation of cup and stem and a modified cup impactor were used to finally seat the definitive acetabular socket manually during trial stem reduction while fully visually controlling the optimal orientation of the cup during impaction. This surgical technique drives both components into their optimal relative positions according to the combined version and the combined safe-zone concept in total hip arthroplasty. Results. Both new instruments, femoral trial head as well as the modified cup impactor, provide an easy way to manually control the optimal placement of the acetabular socket during impaction intraoperatively. The combined safe-zone is clearly indicated and the inverse interrelationship of stem and cup anteversion is ideally reflected by this simple mechanical system. In patients operated on with the “stem-first” technique the components were placed in the new cSafe-Zone in 94% of the cases and no squeaking or prosthetic impingement did occur in any of these patients. One early dislocation did occur and was treated by closed reduction. Conclusion. Stem-first technique using trial head-controlled impaction with a modified cup impactor is ideally suited for the minimal-invasive direct anterior approach in total hip arthroplasty to control the placement of both prosthetic components. It assists the surgeon in aligning the cup and the stem according to the cSafe-Zone in order to get the intended range of movement (iROM)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 28 - 28
1 Jan 2016
Matsumoto K Iwamoto K Mori N Ito Y Takigami I Terabayashi N Ogawa H Tomita T Akiyama H
Full Access

Background. The patterns and magnitudes of axial femorotibial rotation are variable due to the prosthesis design, ligamentous balancing, and surgical procedures. LCS mobile-bearing TKA has been reported the good clinical results, however, knee kinematics has not been fully understood. Therefore, we aimed to investigate the effects of the weight-bearing (WB) condition on the kinematics of mobile-bearing total knee arthroplasty (TKA). Methods. We examined 12 patients (19 knees) implanted with a low contact stress (LCS) mobile-bearing TKA system using a two- to three-dimensional registration technique as previously reported [1]. All 12 patients were diagnosed with medial knee osteoarthritis. The in vivo kinematics of dynamic deep knee flexion under WB and non-WB (NWB) conditions were compared. We evaluated the knee range of motion, femoral axial rotation relative to the tibial component, anteroposterior translation, and kinematic pathway of the femorotibial contact point for both the medial and lateral sides. Results. Under the WB condition, the mean range of motion was 117.8° ± 16.7°. Under the NWB condition, the mean range of motion was 111.0° ± 4.4°. No significant difference in this value was apparent between the 2 conditions. The mean range of axial rotation from full extension to maximum flexion was 3.0° ± 1.5° under the WB condition and 2.2° ± 1.0° under the NWB condition. No significant difference in this value was apparent between the 2 conditions. With regard to the anteroposterior translation, the LCS mobile-bearing TKA system showed the same kinematic patterns under both conditions, except for axial rotation at 0°, 10°, and 110°. From hyperextension to maximum flexion, the kinematic pattern reflected a central pivot under both conditions (Figure 1). Conclusions. In conclusion, this study demonstrated that, in an LCS mobile-bearing TKA system, knee kinematics showed the same patterns under NWB and WB conditions, except for axial rotation at the early phase. Further understanding of knee kinematics could provide us with useful information for future design concepts of TKA implants


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 2 - 2
1 Dec 2016
De Smet K
Full Access

Since the market withdrawal of the ASR hip resurfacing in August 2010 because of a higher than expected revision rate as reported in the Australian Joint Replacement Registry (AOAJRR), metal-on-metal hip resurfacing arthroplasty (MoMHRA) has become a controversial procedure for hip replacement. Failures related to destructive adverse local tissue reactions (ALTR) to metal wear debris have further discredited MoMHRA. Longer term series from experienced resurfacing specialists, however, demonstrate good outcomes with excellent 10- to 15-year survivorship in young and active men. Besides, all hip replacement registries report significantly worse survivorship of total hip arthroplasty (THA) in patients under 50 compared to older ages. The triad of a well-designed device, implanted accurately, in the correct patient has never been more critical than with MoMHRA implants. The surgical objectives of MoMHRA were to preserve bone stock, maintain normal anatomy and mechanics of the hip joint and to approximate the normal stress transmission to the supporting femoral bone. The functional objectives were better sports participation, less thigh pain and limp, less perception of a leg length difference and a greater perception of a normal hip. Cobb reported that patients with MoMHRA were able to walk faster and with more normal stride length than patients with well performing hip replacements. They also show that function following hip replacement is very good, with high satisfaction rates, but the use of a patient centered outcome measure (PCOM), and objective measures of function reveal substantial inferiority of THA over MoMHRA in two well-matched groups. When coupled with the very strong data regarding life expectancy and infection, this functional data makes a compelling case for the use of resurfacing in active adults. Recent studies show a possible increase in life expectancy with MoMHRA. Compared with uncemented and cemented total hip replacements, Birmingham hip resurfacing has a significantly lower risk of death in men of all ages. McMinn's investigations additionally suggest a potentially higher mortality rate with cemented total hip replacements. These results have now been confirmed by other centers as well, and confirm that those undergoing MoMHRA have reduced mortality in the long term (up to 10 years) compared with those undergoing THA and that this difference persisted after extensive adjustment for confounding factors. Early revisions were often due to fracture of the femoral neck while later revisions are associated with loosening and/or ALTR to wear debris. In some studies, revisions of MoMHRA with ALTR have been complicated by an increased risk of re-revision and poor outcome. Component malpositioning is the most common cause of MoMHRA failure. Metal ion measurements are an excellent tool to detect wear at an early stage. The revision analysis highlights the importance of surgical experience, indications and prosthesis design. Use of ion levels, big THA-heads and patient education/compliance were identified as factors improving outcome following MoMHRA revision. Today's MoMHRA is conservative to the bone. It is the first implant that proves decrease of wear in time, disappearance of wear in longer term with a possible life time survival of the implant, this unrelated to the activity of the patient. If following an international consensus, the right implant is used, with a perfect technique in the right patient, all benefits exceed the problems described in the past


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 157 - 157
1 May 2016
Zuo J Liu S Gao Z
Full Access

Objective. To three-dimensionally reconstruct the proximal femur of DDH (Developmental dysplasia of the hip) and measure the related anatomic parameters, so that we could have a further understanding of the morphological variation of the proximal femur of DDH, which would help in the preoperative planning and prosthesis design specific for DDH. Methods. From Jan.2012 to Dec.2014, 38 patients (47 hips) of DDH were admitted and 30 volunteers (30 hips) were selected as controls. All hips from both groups were examined by CT scan and radiographs. The Crowe classification method was applied. The CT data were imported into Mimics 17.0. The three-dimensional models of the proximal femur were then reconstructed, and the following parameters were measured: neck-shaft angle, neck length, offset, height of the centre of femoral head, height of the isthmus, height of greater trochanter, the medullary canal diameter of isthmus(Di), the medullary canal diameter 10mm above the apex of the lesser trochanter(DT+10), the medullary canal diameter 20mm below the apex of the lesser trochanter(DT-20), and then DT+10/Di, DT-20/Di and DT+10/DT-20 were calculated. Results. There is no significant difference in neck-shaft angle between Crowe I-III DDH and the control group, while the neck-shaft angle is much smaller in Crowe IV DDH. The neck length of Crowe IV DDH is much smaller than those of Crowe I-III DDH. As for Di there is neither significant difference between Crowe I DDH and the control group, nor significant difference between CroweII-III and Crowe IV, but the difference is significant between the first two groups and the latter two groups. DT+10/DT-20 and the offset have no significant difference between the control group and DDH groups. DT-20, DT+10, DT+10/Di and DT-20/Di are much smaller in Crowe IV DDH than that in Crowe I-III and the control groups. Height of greater trochanter in Crowe IV is larger than those in Crowe I-III and the control group. Height of the centre of femoral head in Crowe IV DDH is smaller than those in Crowe I-III DDH and the control group. The height of the isthmus in Crowe IV is much smaller than those in Crowe I-III DDH and the control group. Conclusion. The neck-shaft angle in DDH groups is not larger than that in the control group, while in contrast, it's much smaller in Crowe IV DDH than that in the control group. Comparing to Crowe I-III DDH and the control group, Crowe IV DDH has a dramatic change in the intramedullary and extramedullary parameters. The isthmus and the great trochanter are higher and there is apparent narrowing of the medullary canal around the level of the lesser trochanter


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 216 - 216
1 Dec 2013
Abdulkarim A Ellanti P Motterlini N Fahey T O'Byrne JM
Full Access

The optimal method of fixation for primary total hip replacements (THR), particularly fixation with or without the use of cement is still controversial. In a systematic review and meta-analysis of all randomized controlled trials (RCT) comparing cemented versus uncemented THRS available in the published literature, we found that there is no significant difference between cemented and uncemented THRs in terms implant survival as measured by the revision rate. Better short-term clinical outcome, particularly an improved pain score can be obtained with cemented fixation. However, the results are unclear for the long-term clinical and functional outcome between the two groups. No difference was evident in the mortality and the post operative complication rate. On the other hand, the Radiographic findings were variable and do not seem to correlate with clinical findings as differences in the surgical technique and prosthesis design might be associated with the incidence of osteolysis. We concluded in our review that Cemented THR is similar if not superior to uncemented THR, and provides better short term clinical outcomes. Further research, improved methodology and longer follow up are necessary to better define specific subgroups of patients in whom the relative benefits of cemented and uncemented implant fixation can be clearly demonstrated


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 12 - 12
1 Nov 2015
Cohen B
Full Access

The primary goals of successful rTSA (Reverse Total Shoulder Arthroplasty) are pain relief, improved shoulder motion and function with the restoration of patient independence. These goals can be achieved by optimal prosthesis design and surgical technique. Historically there have been two predominant reverse shoulder design philosophies: the traditional valgus 155-degree neck-shaft angle with a medialised center of rotation introduced by Dr. Grammont, and the more recent varus 135-degree neck-shaft angle with a lateralised center of rotation, developed by Dr. Frankle. The latter design has reported lower incidences of scapular notching, coupled with improved adduction and external rotation. Over time, an understanding of the factors which resulted in clinical complications and those that contributed to the clinical success of both these design philosophies has been analyzed and widely publicised. With the currently available reverse prostheses the surgeon is required to be committed to one design philosophy or the other. This commitment to one singular design may hinder surgeons from the ability to individualise each case regardless of patient anatomy, rotator cuff condition, arthritic state and post-operative expectation. Recently, a system has been launched which offers both design philosophies in one system, providing unsurpassed intra-operative flexibility. This allows the surgeon to adapt to each individual case and choose either design philosophy based on patient condition and anatomy, thus optimizing patient outcome. The treatment of proximal humeral fractures has historically included Hemi Arthroplasty (HA) or Total Shoulder Arthroplasty (TSA). However, rTSA has recently become the surgery of choice for many fracture treatments based on more reproducible results. Certain implant characteristics are gaining favor in the treatment of proximal humerus fractures namely:. Press fit humeral stems - which avoid the risks of cement in-between the tuberosities which has been reported to compromise healing. Proximal ‘box-shape’ geometry - which enables rotational stability especially in cases with proximal bone loss to promote reconstruction leading to improved healing. 135-degree neck-shaft angle - allowing a higher and more anatomic tuberosity position for more stable fixation maintains anatomical integrity of the tuberosities which has been reported as a critical factor for retaining rotator cuff function


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 20 - 20
1 May 2019
Galatz L
Full Access

Latissimus dorsi anterior to major transfers have been advocated in the setting of loss of external rotation and elevation in conjunction with reverse shoulder replacement. Reverse shoulder replacement is a prosthesis specifically designed for shoulders with poor rotator cuff function. In the vast majority of cases, some teres minor function at the minimum is maintained in shoulders destined for a reverse shoulder replacement. However, in certain circumstances there is complete loss of any external rotation, and a muscle transfer can be performed in order to restore some external rotation function. A reverse shoulder replacement in the absence of any rotator cuff function goes into obligate internal rotation with elevation. A minimum of external rotation strength is necessary in order to maintain the arm in normal rotation. The first tip is patient selection. Physical examination of active external rotation, external rotation strength and forward elevation should be just performed. A latissimus transfer is indicated in patients who cannot maintain their arm in neutral to at least a few degrees of external rotation. A lag sign is another physical examination finding which can indicate complete loss of rotator cuff function. The latissimus dorsi transfer is performed by first identifying and releasing the latissimus from its insertion on the anterior humerus. The arthroplasty is performed. The passage for the latissimus muscle is developed carefully and being mindful of the axillary nerve in particular. The latissimus is directed inferior to the nerve and around the medial and posterior aspect of the proximal humerus. Different ways of securing the transfer to the humerus have been described including bone tunnels and anchors. Often it is easier to place the anchors and/or the bone tunnels prior to inserting the humeral prosthesis. The latissimus is secured in the new position, enabling it to participate in external rotation. The value of this is difficult to clearly establish. Most studies are evidence level IV and there are no good comparative studies in a controlled patient population. This is a good option for shoulders with no active external rotation, but they may increase overall complication rate. Complications include dislocation, infection, and transient nerve palsy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 22 - 22
1 May 2016
Gao B Angibaud L Johnson D
Full Access

Introduction. Patellofemoral joint is an important aspect of the tri-compartmental knee joint complex. Total knee arthroplasty (TKA) replaces the articulating surfaces of distal femur and proximal tibia, and often times the patella as well. Understanding the size relationship between the femur and patella bones can provide valuable information for new prosthesis design and biomechanical analysis. However, taking anthropometric measurements on a large population of patients or even cadaveric specimens could be a challenge. As a result, there are currently little quantitative data existing in the literature regarding the size relationship between TKA patient's femur and patella. This study attempted to attack this question using a novel statistical approach and a large TKA patient database. Methods. A multi-site clinical database operated by Exactech was used in this study. The database contains patient information of Optetrak TKA implant recipients from over 30 physicians in US, UK, and Colombia since 1995. Nine femoral implant sizes (0, 1, 2, 2.5, 3, 3.5, 4, 5 and 6) and six patellar implant sizes (26, 29, 32, 35, 38, 41 mm) were seen in these patients. Due to the low usage, femoral sizes 0 and 6 were excluded from this analysis. Taking primary TKA only, a total of 2,698 cases were included in this study. The size relationship between femoral implant and patellar implant was analyzed in this patient population. Gender effect was also examined. Results. The usage histograms showed that the most frequently used femoral implant in the database was size 3, and the most frequently used patellar implant sizes were 32 and 35 mm. In general, patients who received a larger femoral implant also received a larger patellar implant. There was a strong correlation between the anterior/posterior (AP) dimension of the femoral implant and the diameter of the spherical patellar implant, with a linear regression showing R2 > 0.9. On average, for 1 mm increase of the femoral AP dimension, the patellar implant increased by 0.36 mm in diameter. The strong correlation between the femoral and patellar dimensions exists for both male and female populations (R2 > 0.9 in both genders). The slope of the regression line was slightly greater for the males than for the females (0.38 vs. 0.33). Discussion. By using a novel statistical approach, this study was able to provide a quantitative assessment of the size relationship between femoral and patellar implants of TKA patients. There was a strong correlation between the femoral implant's AP dimension and the patellar implant's diameter. The increase ratio of the two dimensions was about 1:0.36. There was a minor difference between genders in terms of the increase ratio, but the overall trends were similar. Statistically we can assume that the femoral implant resembled the AP dimension of the distal femur, and the patellar implant diameter resembled the short axis of the patellar oval. Thus, the results in this study also provided a meaningful anthropometric measurement of the native femur and the patella bones