Advertisement for orthosearch.org.uk
Results 1 - 20 of 386
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 106 - 106
1 Feb 2020
Wise C Oladokun A Maag C
Full Access

Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the acetabular liner articulates against the neck of a femoral stem prosthesis. This may occur in vivo due to factors such as prostheses design, patient anatomical variation, and/or surgical malpositioning, and may be linked to joint instability, unexplained pain, and dislocation. The Standard Test Method for Impingement of Acetabular Prostheses, ASTM F2582 −14, may be used to evaluate acetabular component fatigue and deformation under repeated impingement conditions. It is worth noting that while femoral neck impingement is a clinical observation, relative motions and loading conditions used in ASTM F2582-14 do not replicate in vivo mechanisms. As written, ASTM F2582-14 covers failure mechanism assessment for acetabular liners of multiple designs, materials, and sizes. This study investigates differences observed in the implied and executed kinematics described in ASTM F2582-14 using a Prosim electromechanical hip simulator (Simulation Solutions, Stockport, Greater Manchester) and an AMTI hydraulic 12-station hip simulator (AMTI, Watertown, MA). Method. Neck impingement testing per ASTM F2582-14 was carried out on four groups of artificially aged acetabular liners (per ASTM F2003-15) made from GUR 1020 UHMWPE which was re-melted and cross-linked at 7.5 Mrad. Group A (n=3) and B (n=3) consisted of 28mm diameter femoral heads articulating on 28mm ID × 44mm OD acetabular liners. Group C (n=3) and D (n=3) consisted of 40mm diameter femoral heads articulating on lipped 40mm ID × 56mm OD 10° face changing acetabular liners. All acetabular liners were tested in production equivalent shell-fixtures mounted at 0° initial inclination angle. Femoral stems were potted in resin to fit respective simulator test fixtures. Testing was conducted in bovine serum diluted to 18mg/mL protein content supplemented with sodium azide and EDTA. Groups A and C were tested on a Prosim; Groups B and D were tested on an AMTI. Physical examination and coordination measurement machine (CMM) analyses were conducted on all liners pre-test and at 0.2 million cycle intervals to monitor possible failure mechanisms. Testing was conducted for 1.0 million cycles or until failure. An Abaqus/Explicit model was created to investigate relative motions and contact areas resulting from initial impingement kinematics for each test group. Results. Effects of kinematic differences in the execution of ASTM F2582-14 were observed in the four groups based on simulator type (Figure 1) and liner design. The Abaqus/Explicit FEA model revealed notable differences in relative motions and contact points (Figure 2) between specimen components i.e. acetabular liner, femoral head, and femoral stem throughout range of motion. Acetabular liner angular change within shell-fixtures, rim deformation, crack propagation, and metal-on-metal contact between acetabular shell-fixtures and femoral stems were observed as potential failure mechanisms (Figure 3) throughout testing. These mechanisms varied in severity by group due to differing contact stresses and simulator constraints. Significance. Investigating failure mechanisms caused by altered kinematics of in-vitro neck impingement testing, due to influences of simulator type and acetabular liner design, may aid understanding of failure mechanisms involved when assessing complaints/retrievals and influence future prosthetic designs. For any figures or tables, please contact the authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 4 | Pages 759 - 773
1 Nov 1973
Swanson SAV Freeman MAR Heath JC

1. Currently available total replacement hip and knee prostheses were tested in a machine enabling flexion-extension movements to be applied whilst the prostheses were surrounded with Ringer's solution or other liquid and loaded within the physiological range. 2. Prostheses of which both components were made in cobalt-chromium-molybdenum alloy produced visible quantities of alloy particles, whose sizes ranged down to about 0·1 microns, and cobalt and molybdenum ions in solution. 3. No metallic or plastic particles were detected during tests on a hip prosthesis made of stainless steel and high density polyethylene. 4. The frictional moments in cobalt-chromium-molybdenum hip prostheses were higher than in stainless steel-polyethylene hip prostheses, by a factor of at least 2 to 1. 5. It is accepted that the conditions of these tests were probably more severe than in life, but the difference is held to be one of degree and not one of kind. 6. The particulate alloy debris, when injected in massive doses into the muscles of rats, gave an incidence of malignant tumours which was comparable to that already established for pure cobalt powder, whereas particles of several other metals, tested in the same way, gave no tumours. 7. It is argued that the particles which are known to be produced in at least some patients using cobalt-chromium-molybdenum total replacement joint prostheses constitute a risk of tumour formation which is certainly small, possibly negligible, but not accurately calculable at present. 8. The results of these tests, particularly the differences in frictional moment and in the production of particulate debris, suggest a preference for high density polyethylene as one component of a total joint replacement prosthesis


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 256 - 257
1 Jul 2008
LANGLAIS F BELOT N ROPARS M LAMBOTTE J THOMAZEAU H
Full Access

Purpose of the study: Revision total knee arthroplasty with major destruction of bone and ligament tissue raises the problem of choosing between a complex reconstruction with a semi-constrained prosthesis or a much more simple procedure using a hinged prosthesis which transmits all of the stress to the bone anchors. The choice is basically one of longevity of the bony fixation of these constrained prostheses (and the deterioration of the articulated pieces). The present work reports the long-term outcome observed with constrained hinged prosthesis with a cemented press-fit stem implanted for bone tumors where the stress is even greater than for revisions. Material and methods: The series included 32 prostheses implanted in young active subjects (mean age 33 years). A hinged, non-rotating Guepar II revision prosthesis was implanted. The part of the implant corresponding to the reconstruction after tumor resection was custom-made but the part implanted in «healthy» bone (for example the tibial piece in a patient with a femoral tumor) was the same as used for revisions prostheses inserted after loosening. On the healthy side, press-fit quadrangular stems were used, generally adapted to the endosteum by reaming. The prosthesis was fixed by simple mechanical adjustment before cementing, using the French paradox system (JBJS 2003). Before 1993, a metal-polyethylene bearing was used and after 1993 a metal-on-metal bearing without inserts. Results: Among the 32 patients with a malignant tumor, 19 survived, seven with 2–10 years follow-up and 12 with 10–21 years follow-up. For the overall series, there was only one case of osteolysis on a tibial tumor which was revised at 12 years. There was one infection (hematogeneous) at 21 years (antibiotic cement). Prostheses with polyethylene inserts produced laxities or synovitis with 50% requiring synovectomy and insert replacement. There were no cases of synovitis for the metal-on-metal bearings. Two stems (inserted in adolescents) were too thin and had to be changed because of fracture without loosening. Discussion: Prosthesis survival was 88% at ten years (1 osteolysis, 2 fractures on tumor), even for the constrained prostheses, even for young and active subjects. Conclusion: The very good longevity of cemented pressfit stems (and the absence of synovitis and osteolysis with metal-on-metal bearings, and the low rate of infection) should be kept in mind as a possible alternative to very complex and possibly less predictable procedures in the presence of certain very severe loosenings with bone and ligament destruction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 91 - 91
1 Jul 2014
Dowling R Pendegrass C Thomas B Blunn G
Full Access

Summary. Osseointegrated Amputation Prostheses can be functionalised by both biological augmentation and structural augmentation. These augmentation techniques may aid the formation of a stable skin-implant interface. Introduction. Current clinical options are limited in restoring function to amputees, and are associated with contact dermatitis and infection at the stump-socket interface. Osseointegrated Amputation Prosthesis attempts to solve issues at the stump-socket interface by directly transferring axial load to the prosthesis, via a skin-penetrating abutment. However, development is needed to achieve a seal at the skin-implant interface to limit infection. Fibronectin, an Extracellular Matrix protein, binds to integrins during wound healing, with the RGD tripeptide being part of the recognition sequence for its integrin binding domain. In vitro work has found silanization of RGD to polished titanium discs up regulates fibroblast attachment compared to polished control. Electron Beam Melting can produce porous titanium alloy implants, which may encourage tissue attachment. This study aims to test whether a combination of biological RGD coatings and porous metal manufacturing techniques can encourage the formation of a seal at the skin-implant interface. Materials and Methods. We developed four different augmented transcutaneous devices: Porous, Porous RGD coated, drilled and drilled RGD coated. These were implanted in tibial transcutaneous ovine model, n=6, for a period of 6 months. Following explantation we performed hard grade resin histology to assess soft tissue attachment at the transcutaneous interface. Results. Histological analysis revealed no statistical difference in epithelial downgrowth and epidermal attachment values between the four augmented devices. There were significant increases (p<0.05) in the number of blood vessels and the number of cells in the Porous RGD devices compared with both drilled implant devices. Both Porous and Porous RGD implant groups observed significant increase (p<0.05) in soft tissue infiltration compared with both Drilled implant devices. Discussion. The use of porous structures and RGD coatings increases tissue ingrowth and revascularisation in ITAP devices despite having no effect on epithelial downgrowth and epidermal attachment in a long-term ovine model. There were no detrimental effects in the transcutaneous interface formation observed. These augmentation techniques may prove beneficial in preclinical and clinical developments of transcutaneous osseointegrated devices


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 43 - 43
1 Mar 2013
Dowling RP Pendegrass CJ Blunn GW
Full Access

To try and aid the formation of a soft tissue seal to promote dermal and epidermal attachment to Intraosseous Transcutaneous Amputation Prostheses we compared the effect of titanium surfaces functionalised with fibronectin (fn) or YRGD peptide sequences on human dermal cell (HDF) attachment. We hypothesise that YRGD and fn coatings will significantly increase HDF attachment to titanium alloy substrates. Titanium alloy 10mm discs were polished and acted as control substrates, functionalised surfaces had YRGD or fn adsorbed or silanised onto the polished surface. HDFs were seeded at 10,000/disc and cultured for 1, 4, 24 and 96 hours, fixed and fluorescent immnolocalisation for vinculin was performed. Individual vinculin markers were counted and density calculated as a measure of cell attachment. All assays were performed in triplicate and data were analysed in SPSS 19.0 and results were considered significant at the 0.05 level. Results showed an up-regulation of Focal adhesion density (FA) against controls at all time-points (excluding ad-fn at 4 hours, p=0.057), p values < 0.05, the use of functionalised titanium surfaces may lead to long-term clinical success of ITAP. We have shown a significant positive effect on cell attachment when a synthetic peptide sequence is used. Using synthetic peptide sequence may also be more beneficial from a regulatory stand-point compared with using isolated proteins


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 15 - 15
1 Dec 2022
Graziani G Ghezzi D Sartori M Fini M Perut F Montesissa M Boi M Cappelletti M Sassoni E Di Pompo G Giusto E Avnet S Monopoli D Baldini N
Full Access

Infection in orthopedics is a challenge, since it has high incidence (rates can be up to 15-20%, also depending on the surgical procedure and on comorbidities), interferes with osseointegration and brings severe complications to the patients and high societal burden. In particular, infection rates are high in oncologic surgery, when biomedical devices are used to fill bone gaps created to remove tumors. To increase osseointegration, calcium phosphates coatings are used. To prevent infection, metal- and mainly silver-based coatings are the most diffused option. However, traditional techniques present some drawbacks, including scarce adhesion to the substrate, detachments, and/or poor control over metal ions release, all leading to cytotoxicity and/or interfering with osteointegration. Since important cross-relations exist among infection, osseointegration and tumors, solutions capable of addressing all would be a breakthrough innovation in the field and could improve clinical practice.

Here, for the first time, we propose the use antimicrobial silver-based nanostructured thin films to simultaneously discourage infection and bone metastases. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture. These characteristics, in turn, allow tuning silver release and avoid delamination, thus preventing toxicity. In addition, to mitigate interference with osseointegration, here silver composites with bone apatite are explored. Indeed, capability of bone apatite coatings to promote osseointegration had been previously demonstrated in vitro and in vivo. Here, antibacterial efficacy and biocompatibility of silver-based films are tested in vitro and in vivo. Finally, for the first time, a proof-of-concept of antitumor efficacy of the silver-based films is shown in vitro.

Coatings are obtained by silver and silver-bone apatite composite targets. Both standard and custom-made (porous) vertebral titanium alloy prostheses are used as substrates.

Films composition and morphology depending on the deposition parameters are investigated and optimized. Antibacterial efficacy of silver films is tested in vitro against gram+ and gram- species (E. coli, P. aeruginosa, S. aureus, E. faecalis), to determine the optimal coatings characteristics, by assessing reduction of bacterial viability, adhesion to substrate and biofilm formation. Biocompatibility is tested in vitro on fibroblasts and MSCs and, in vivo on rat models. Efficacy is also tested in an in vivo rabbit model, using a multidrug resistant strain of S. aureus (MRSA, S. aureus USA 300). Absence of nanotoxicity is assessed in vivo by measuring possible presence of Ag in the blood or in target organs (ICP-MS). Then, possible antitumor effect of the films is preliminary assessed in vitro using MDA-MB-231 cells, live/dead assay and scanning electron microscopy (FEG-SEM). Statistical analysis is performed and data are reported as Mean ± standard Deviation at a significance level of p <0.05. Silver and silver-bone apatite films show high efficacy in vitro against all the tested strains (complete inhibition of planktonic growth, reduction of biofilm formation > 50%), without causing cytotoxicity. Biocompatibility is also confirmed in vivo.

In vivo, Ag and Ag-bone apatite films can inhibit the MRSA strain (>99% and >86% reduction against ctr, respectively). Residual antibacterial activity is retained after explant (at 1 month). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 288 - 288
1 Jul 2008
CRISTEA S PREDESCU V GROSEANU F POPESCU M ANTONESCU D
Full Access

Purpose of the study: Generally, hip prosthesis implantation for congenital hip dysplasia is a routine procedure. Material and methods: We compared preliminary results between two surgical techniques. On one hand, hip prostheses were implanted via trochanterotomy with femoral shortening osteotomy for cemented insertion and trochanteroplasty. On the other, access was achieved via a triple infratrochanteric osteotomy for shortening, correction of valgum and derotation followed by implantation of a press-fit prosthesis without osteosynthesis. Results:. Between 1993 and 2001, 61 patients underwent surgery for Crowe III or Eftekhar grade C hips (n=45) and Crowe IV or Eftekhar grade D hips (n=16). Mean patient age was 42 years. Prostheses inserted via the trans-trochanteric approach with femoral shortening osteotomy and cementing developed complications related to the trochanteroplasty: nonunion of the greater trochanter (n=6), functional impairment (n=2), infection after bursitis on suture and secondary necrosis (n=1). Because of these complications we adopted the triple femoral osteotomy technique for shortening, derotation and press-fit femoral implants. Between 2001 and 2005, eight Eftekhar D hips were treated with this technique. Locked non-cemented femoral prostheses were inserted. Pre- and postoperative clinical assessment was based on the Postel-Merle-d’Aubigné score. For the cup, the technique remained unchanged, with cemented implants. The lengthening obtaine varied from 3.5 to 5.5 cm with no cases of sciatic palsy. There has been no case of prosthesis dislocation. Conclusion: These preliminary results concern non-cemented femoral prosthesis with insufficient follow-up. We nevertheless have found this an attractive technique free of femoral complications


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 99 - 99
1 Sep 2012
Maempel J Coathup M Calleja N Maempel FZ Briggs T Cannon S Blunn G
Full Access

Background/Aims. The development of extendable prostheses has permitted limb salvage surgery in paediatric patients with bone tumours in proximity to the physis. Prostheses are extended to offset limb length discrepancy as the child grows. Aseptic loosening (AL) is a recognised complication. The implant stem must fit the narrow paediatric medullary canal and remain fixed while withstanding growth and increasing physical demands. Novel designs incorporate a hydroxyapatite (HA) coated collar that manufacturers claim improves bony ongrowth and stability, providing even stress distribution in stem and shoulder regions and providing a bone-implant seal, resulting in decreased AL and prolonged survival. This study aims to assess whether there is a relationship between bony ongrowth onto a HA collar and AL. Hypothesis: Bone ongrowth onto the HA collar of extendable prostheses is associated with more stable fixation and less AL despite patient growth. Methods. Retrospective review of 51 primary partial femoral extendable prostheses implanted over 12 years from 1994–2006 (followed up to death at a mean of 2.5±2.2 years or last clinical encounter at a mean of 8.6 years) and 24 subsequent revisions, to ascertain failure rate and mode, together with a cohort study reviewing bony ongrowth onto the HA coated collar in 10 loose and 13 well fixed partial femoral, humeral and tibial implants. Patient growth was measured as a change in bone:implant-width ratio. Results. 21 (41.2%) primary femoral implants failed at a mean 42.8 months, 5 through AL. 1 secondary implant was revised for AL. 2 implants displayed evidence of progressive AL but had not failed at last follow-up. 5 of 11 tibial component revisions in distal femoral replacement were due to AL. 1 major complication occurred after revision surgery for AL in a primary implant: deep infection requiring 2 stage revision. Bony collar ongrowth was significantly higher in all 4 quadrants (anterior, posterior, medial and lateral) in the well-fixed as opposed to loose group, demonstrating a strong negative relationship in each quadrant between bony ongrowth and AL (p0.001) in the presence of patient growth as shown by increased bone:implant width ratio. In both groups, collar ongrowth was greatest in the posterior quadrant. Summary and Conclusions: AL has been confirmed as a common cause of failure in massive extendable endoprostheses. Revision surgery is difficult and may cause serious complications. For the first time, a significant relationship between a well fixed implant stem and bony ongrowth onto a HA coated collar in the context of massive implants used in tumour surgery has been demonstrated. This newly-proven relationship may result in longer-term implant survival and thus a reduced need for revision surgery. It is hoped that this study will provide the basis for further study of this relationship


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 22 - 22
1 Dec 2022
Betti V Ruspi M Galteri G Ognisanto E Cristofolini L
Full Access

The anatomy of the femur shows a high inter-patient variability, making it challenging to design standard prosthetic devices that perfectly adapt to the geometry of each individual. Over the past decade, Statistical Shape Models (SSMs) have been largely used as a tool to represent an average shape of many three-dimensional objects, as well as their variation in shape. However, no studies of the morphology of the residual femoral canal in patients who have undergone an amputation have been performed. The aim of this study was therefore to evaluate the main modes of variation in the shape of the canal, therefore simulating and analysing different levels of osteotomy.

To assess the variability of the femoral canal, 72 CT-scans of the lower limb were selected. A segmentation was performed to isolate the region of interest (ROI), ranging from the lesser tip of the trochanter to the 75% of the length of the femur. The canals were then sized to scale, aligned, and 16 osteotomy levels were simulated, starting from a section corresponding to 25% of the ROI and up to the distal section. For each level, the main modes of variations of the femoral canal were identified through Principal Component Analysis (PCA), thus generating the mean geometry and the extreme shapes (±2 stdev) of the principal modes of variation.

The shape of the canals obtained from these geometries was reconstructed every 10 mm, best- fitted with an ellipse and the following parameters were evaluated: i) ellipticity, by looking at the difference between axismax and axismin; ii) curvature of the canal, calculating the arc of circumference passing through the shapes’ centroids; iii) conicity, by looking at the maximum/minimum diameter; iv) mean diameter. To understand the association between the main modes and the shape variance, these parameters were compared, for each level of osteotomy, between the two extreme geometries of the main modes of variation.

Results from PCA pointed out that the first three PCs explained more than the 87% of the total variance, for each level of simulated osteotomy. By analysing the extreme geometries for a distal osteotomy (e.g. 80% of the length of the canal), the first PC was associated to a combination of ROC (var%=41%), conicity (var%=28%) and ellipticity (var%=7%). PC2 was still associated with the ROC (var%=16%), while PC3 turned out to be associated with the diameter (var%=38%).

Through the SSM presented in this study, a quantitatively evaluation of the deformation of the intramedullary canal has been made possible. By analysing the extreme geometries obtained from the first three modes of variance, it is clear that the first three PCs accounted for the variations in terms of curvature, conicity, ellipticity and diameter of the femoral canal with a different weight, depending on the level of osteotomy. Through this work, it was also possible to parametrize these variations according to the level of excision. The results given for the segment corresponding to the 80% of the length of the canal showed that, at that specified level, the ROC, conicity and ellipticity were the anatomical parameters with the highest range of variability, followed by the variation in terms of diameter. Therefore, the analysis carried out can provide information about the relevance of these parameters depending on the level of osteotomy suffered by the amputee. In this way, optimal strategies for the design and/or customization of osteo-integrated stems can be offered depending on the patient's residual limb.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 638 - 641
1 May 2012
Ha C Na S

We aimed to obtain anthropometric data on Korean knees and to compare these with data on commonly available total knee arthroplasties (TKAs). The dimensions of the femora and tibiae of 1168 knees were measured intra-operatively. The femoral components were found to show a tendency toward mediolateral (ML) under-coverage in small femurs and ML overhang in the large femurs. The ML under-coverage was most prominent for the small prostheses. The ML/anteroposterior (ML/AP) ratio of Korean tibiae was greater than that of tibial components.

This study shows that, for different reasons, current TKAs do not provide a reasonable fit for small or large Korean knees, and that the ‘gender-specific’ and ‘stature-specific’ components help for large Korean femurs but offer less satisfactory fits for small femurs. Specific modifications of prostheses are needed for Asian knees.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 202 - 202
1 May 2011
Ciccarelli M Russo R Della Rotonda G Cautiero F
Full Access

Purpose: The three dimensional position of the tuberosity and the tension of the rotator cuff influence the structural changes of the rotator cuff and their influence on clinical results of reversed trauma prostheses. We propose this technique with it of a biological support, the fractured humeral head, adequately modeled, in order to give again the just tension to the cuff. Method: from February 2007 and February 2009 we treated 29 patients with a reversed trauma prostehes, in 7 cases we have practiced the bony necktie, for giving a support to the correct reconstruction of the tuberosity. The patients have an average of 71,5 years and was evaluated with Constant score and radiographic study with mean follow-up of 18,6 months. Results: Improvement of postoperative Constant score and radiographic good results were correlated with satisfactory subjective results. However, these results will have to be confirmed with more cases and later revision. Conclusion: Tuberosity position and healing is critical for clinical and radiographic outcome in shoulder arthroplasty in trauma. In particular the rate resorption of the tuberosity in Reverse Trauma Prostheses still is elevated. we propose a new surgical technical in order to give again the just position to the tuberosity fractured and therefore to give tension to the rotator cuff


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 80 - 80
1 Jul 2014
Jauch S Ng L Peirce S Dhokia V Miles A Gill H
Full Access

Summary. The required torque leading to an abrasion of the passive layer in the stem-head interface positively correlates to the assembly force. In order to limit the risk of fretting and corrosion a strong hammer blow seems to be necessary. Introduction. Modular hip prostheses are commonly used in orthopaedic surgery and offer a taper connection between stem and ball head. Taper connections are exposed to high bending loads and bear the risk of fretting and corrosion, as observed in clinical applications. This is particularly a problem for large diameter metal bearings as the negative effects may be enhanced due to the higher moments within the taper connection. Currently, it is not known how much torque is required to initiate a removal of the passive layer, which might lead to corrosion over a longer period and limits the lifetime of prostheses. Therefore, the purpose of this study was to identify the amount of torque required to start an abrasion of the passive layer within the interface dependent on the assembly force and the axial load. Materials and Methods. Titanium hip stems (Furlong H-AC, JRI, UK) and cobalt-chromium heads (⊘ 28mm, size L, JRI, UK) were assembled using a drop rig with peak forces of 4.5 kN (F. P,1. , n = 4) or 6.0 kN (F. P,2. , n = 4). The prostheses were inverted and then mounted with the head rigidly fixed to the base of a materials testing machine using a non-conducting (nylon) jig while submerged in Ringer's solution. The stems were attached to the machine actuator via non-conductive plates. An axial load (F. A,1. = 1 kN, F. A,2. = 3 kN, n = 4 each) was applied to the stems along the taper axis. After a period of equilibration a torque, increasing from 0 up to 15Nm, was manually applied. The galvanic potential at the taper interface was continuously recorded using a titanium electrode. The torque required to cause a drop in the potential of 5% was identified. For statistical analyses non-parametric tests were performed (α = 0.05). Results. Four different phases of the potential could be clearly differentiated during testing: equilibrium, removal of the passive layer leading to a drop of the potential, repassivation and then a second equilibrium. Prostheses assembled with a force of 6 kN required a significantly higher torque to start a removal of the passive layer compared to those with 4.5 kN (7.2 ± 0.5 Nm vs. 3.9 ± 1.0 Nm for F. A,1. , p = 0.029). In contrast, no influence of the axial load on the fretting behaviour of the prostheses could be found (8.0 ± 1.6 Nm for F. P,2. , p = 0.486). Discussion. Changes in the galvanic potential were observed at low torque levels for a small head diameter. With increasing head diameter the tangential force leading to a removal of the passive layer in the stem-head interface decrease resulting in a higher risk for corrosion. Component assembly with a high force reduces the risk of fretting and corrosion in the taper interface; however, it is feasible that the determined torque levels can still be reached, particularly in situations of large weight and high activity of the patient or malpositioning of the prosthesis in the body


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 45 - 45
23 Jun 2023
Lieberman JR
Full Access

Modular dual mobility (DM) articulations are increasingly utilized during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) abnormalities with serum metal ion levels in patients with DM articulations.

All patients with an asymptomatic, primary THA and DM articulation with >2-year follow-up underwent MARS-MRI of the operative hip. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels.

Forty-five patients (50 hips) with a modular DM articulation were included with average follow-up of 3.7±1.2 years. Two patients (4.4%) had abnormal periprosthetic fluid collections on MARS-MRI with cobalt levels >3.0 μg/L. Four patients (8.9%) had MARS-MRI findings consistent with greater trochanteric bursitis, all with cobalt levels < 1.0 μg/L. A seventh patient had a periprosthetic fluid collection with normal ion levels. Of the 38 patients without MARS-MRI abnormalities, 37 (97.4%) had cobalt levels <1.0 μg/L, while one (2.6%) had a cobalt level of 1.4 μg/L. One patient (2.2%) had a chromium level >3.0 μg/L and a periprosthetic fluid collection. Of the 41 patients with titanium levels, five (12.2%) had titanium levels >5.0 μg/L without associated MARS-MRI abnormalities.

Periprosthetic fluid collections associated with elevated serum cobalt levels in patients with asymptomatic dual mobility articulations occur infrequently (4.4%), but further assessment of these patients is necessary.

Level of Evidence: Level IV


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 10 - 10
1 Apr 2022
Baumgart R
Full Access

Introduction

“Bioexpandable” prostheses after resection of malignant bone tumors in children to lengthen the bone using the method of callus distraction may offer new perspectives and better long-term results.

Materials and Methods

The bioexpandable prosthesis is equipped with an encapsulated electromotor which enables the device to perform distraction in an osteotomy gap with about 1mm/day. The new bone is improving the ratio from bone to prosthesis and therewith the potential stability of the final stem. The device is indicated, when limb length discrepancy is getting more than 3 cm or at maturity and can be used in a minimal invasive way for femur lengthening.


Abstract

INTRODUCTION

The anatomic distal femoral locking plate (DF-LCP) has simplified the management of supracondylar femoral fractures with stable knee prostheses. Osteoporosis and comminution seem manageable, but at times, the construct does not permit early mobilization. Considerable soft tissue stripping during open reduction and internal fixation (ORIF) may delay union. Biological plating offsets this disadvantage, minimizing morbidity.

Materials

Thirty comminuted periprosthetic supracondylar fractures were operated from October 2010 to August 2016. Fifteen (group A) were treated with ORIF, and fifteen (group B) with closed (biological) plating using the anatomical DF-LCP. Post-operatively, standard rehabilitation protocol was followed in all, with hinged-knee-brace supported physiotherapy. Clinico-radiological follow-up was done at 3 months, 6 months, and then yearly (average duration, 30 months), and time to union, complications, failure rates and function were evaluated.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry.

16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation.

Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01).

The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 31 - 31
1 Apr 2019
Elkabbani M El-Sayed MA Tarabichi S Schulte M
Full Access

The objective of this study was to evaluate the short term clinical and radiological results of a new short stem hip implant. In 29 consecutive patients suffering from osteoarthritis with 33 affected hip joints, the clinical and radiological results of 33 cementless hip arthroplasties using a cementless implanted short stem prosthesis type Aida and a cementless cup type Ecofit were evaluated prospectively between October 2009 and June 2015 in two hospitals. The median age of patients at time of surgery was 55 years (range, 30–71 years), 23 male and 10 female patients were included in the study. The median clinical follow up was 24 months (range, 1.5–51 months), and the median radiological follow up was 12 months (range, 1–51 months). Two patients were lost to follow up and two patients had only one immediate postoperative x- ray. The Harris Hip Score improved from a median preoperative value of 53 to a median postoperative value of 93 at follow up. Radiological analysis showed that 19 stems (58%) showed stable bony ingrowth, five cases (15%) showed stable fibrous ingrowth. Four cases need further follow up for proper evaluation of stem fixation. The short term survival of this new short stem is very promising, and achieving the goals of standard hip arthroplasty.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 45 - 45
1 Apr 2019
Joyce T Giddins G
Full Access

Objective

We explanted NeuFlex metacarpophalangeal (MP) joint prostheses to identify common features, such as position of fracture, and thus better understand the reasons for implant failure.

Methods

Explanted NeuFlex MP joint prostheses were retrieved as part of an-ongoing implant retrieval programme. Following revision MP joint surgery the implants were cleaned and sent for assessment. Ethical advice was sought but not required. The explants were photographed. The position of fracture, if any, was noted. Patient demographics were recorded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 15 - 15
1 Dec 2017
Gelderman SJ Jutte PC Boellaard R Kampinga GA Ploegmakers JJ Glaudemans AWJM Wouthuyzen-Bakker M
Full Access

Aim

Diagnosing a prosthetic joint infection (PJI) can be difficult. Several imaging modalities are available, but the choice which technique to use is often based on local expertise, availability and costs. Some centers prefer to use 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as first imaging modality of choice, but due to a lack of accurate interpretation criteria, FDG-PET is currently not routinely applied for diagnosing PJI. With FDG-PET it is difficult to differentiate between FDG uptake due to reactive inflammation and uptake due to an infection. Since the physiological uptake pattern around a joint prosthesis is not fully elucidated, the aim of this study was to determine: i) the FDG uptake pattern in non-infected total hip prostheses and, ii) to evaluate whether there is a difference in uptake between cemented and non-cemented prostheses.

Method

Patients with a primary total hip arthroplasty (1995–2016) without clinical signs of an infection that underwent a FDG-PET for another indication (mainly suspicion of malignancy) were included and retrospectively analysed. Patients in whom the prosthesis was implanted < 6 months prior to FDG-PET were excluded, to avoid post-surgical effects. Scans were visually and quantitatively analysed. Quantitative analysis was performed by calculating maximum and peak standardized uptake values (SUVmax and SUVpeak) by volume of interests (VOIs) at eight different locations around the prosthesis, from which the mean SUV was calculated. SUV was standardized by the liver SUV that was taken as background.