Aims. This study aimed to compare the performance of survival
Aims. To develop and internally validate a preoperative clinical
Over 300,000 total hip arthroplasties (THA) are performed annually in the USA. Surgical Site Infections (SSI) are one of the most common complications and are associated with increased morbidity, mortality and cost. Risk factors for SSI include obesity, diabetes and smoking, but few studies have reported on the predictive value of pre-operative blood markers for SSI. The purpose of this study was to create a clinical
Total knee arthroplasty (TKA) is the most commonly performed elective orthopaedic procedure. With an increasingly aging population, the number of TKAs performed is expected to be ∼2,900 per 100,000 by 2050. Surgical Site Infections (SSI) after TKA can have significant morbidity and mortality. The purpose of this study was to construct a risk
Early and accurate prediction of hospital length-of-stay
(LOS) in patients undergoing knee replacement is important for economic
and operational reasons. Few studies have systematically developed
a multivariable model to predict LOS. We performed a retrospective
cohort study of 1609 patients aged ≥ 50 years who underwent elective,
primary total or unicompartmental knee replacements. Pre-operative
candidate predictors included patient demographics, knee function,
self-reported measures, surgical factors and discharge plans. In
order to develop the model, multivariable regression with bootstrap
internal validation was used. The median LOS for the sample was
four days (interquartile range 4 to 5). Statistically significant
predictors of longer stay included older age, greater number of comorbidities,
less knee flexion range of movement, frequent feelings of being
down and depressed, greater walking aid support required, total
(versus unicompartmental) knee replacement, bilateral
surgery, low-volume surgeon, absence of carer at home, and expectation
to receive step-down care. For ease of use, these ten variables were
used to construct a nomogram-based
A predictive model for final kyphosis was tested by evaluating the radiographs of forty-three patients with traumatic burst fractures. Since clinical outcomes are related to final kyphosis in the ambulatory patient rather than on the initial supine injury radiograph, the ability to predict final kyphosis is beneficial in determining treatment. This study demonstrated that in the appropriately selected patient for conservative care, the limit of final-kyphosis(Kf) can be predicted from the intial-kyphosis(KI) , such that Kf= <
KI+.5KI . Outliers from this equation were patients who had unrecognized posterior column fractures, superior and inferior end-plate fractures, and/or multiple level of injury. The purpose of this study was to define a
Fractures through the physis account for 18–30% of all paediatric fractures, leading to growth arrest in 5.5% of cases. We have limited knowledge to predict which physeal fractures result in growth arrest and subsequent deformity or limb length discrepancy. The purpose of this study is to identify factors associated with physeal growth arrest to improve patient outcomes. This prospective cohort study was designed to develop a clinical
Introduction. Previous studies have shown that third body damage to the femoral head in metal-on-polyethylene hip replacement bearings can lead to accelerated wear of the polyethylene liners. The resulting damage patterns observed on retrieved metal heads are typically scratches and scrapes. The damage created in vitro must represent the third body damage that occurs clinically. A computational model was developed to predict the acceleration of wear of polyethylene articulating against in vitro damaged femoral heads. This involved using a damage registry from retrieval femoral heads to develop standardized templates of femoral head scratches statistically representative of retrieval damage. The aim of this study was to determine the wear rates of polyethylene liners articulating against retrievals and artificially damaged metal heads for the purpose of validating a computational wear
Numerous prediction tools are available for estimating postoperative risk following spine surgery. External validation studies have shown mixed results. We present the development, validation, and comparative evaluation of novel tool (NZSpine) for modelling risk of complications within 30 days of spine surgery. Data was gathered retrospectively from medical records of patients who underwent spine surgery at Waikato Hospital between January 2019 and December 2020 (n = 488). Variables were selected a priori based on previous evidence and clinical judgement. Postoperative adverse events were classified objectively using the Comprehensive Complication Index. Models were constructed for the occurrence of any complication and significant complications (based on CCI >26). Performance and clinical utility of the novel model was compared against SpineSage (. https://depts.washington.edu/spinersk/. ), an extant online tool which we have shown in unpublished work to be valid in our local population. Overall complication rate was 34%. In the multivariate model, higher age, increased surgical invasiveness and the presence of preoperative anemia were most strongly predictive of any postoperative complication (OR = 1.03, 1.09, 2.1 respectively, p <0.001), whereas the occurrence of a major postoperative complication (CCI >26) was most strongly associated with the presence of respiratory disease (OR = 2.82, p <0.001). Internal validation using the bootstrapped models showed the model was robust, with an AUC of 0.73. Using sensitivity analysis, 80% of the
110 had MRSA infection in their surgical wound. 83 of 110 (75.5%) patients were non-elective admissions, of which 49 (60%) were proximal femur fractures. 20% of proximal femur fractures admitted from nursing home and 7.8% from their own homes developed SSI with MRSA. This cohort of SSI with MRSA had an average of 5.7(1–18) previous admissions. 25 (23%) had been previously colonised with MRSA. Majority of them (76%) were between 70–90 years old and were ASA grade 3–4.
Aims. To develop
This study demonstrates a significant correlation
between the American Knee Society (AKS) Clinical Rating System and
the Oxford Knee Score (OKS) and provides a validated prediction
tool to estimate score conversion. A total of 1022 patients were prospectively clinically assessed
five years after TKR and completed AKS assessments and an OKS questionnaire.
Multivariate regression analysis demonstrated significant correlations between
OKS and the AKS knee and function scores but a stronger correlation
(r = 0.68, p <
0.001) when using the sum of the AKS knee and
function scores. Addition of body mass index and age (other statistically
significant predictors of OKS) to the algorithm did not significantly
increase the predictive value. The simple regression model was used to predict the OKS in a
group of 236 patients who were clinically assessed nine to ten years
after TKR using the AKS system. The predicted OKS was compared with
actual OKS in the second group. Intra-class correlation demonstrated
excellent reliability (r = 0.81, 95% confidence intervals 0.75 to
0.85) for the combined knee and function score when used to predict
OKS. Our findings will facilitate comparison of outcome data from
studies and registries using either the OKS or the AKS scores and
may also be of value for those undertaking meta-analyses and systematic
reviews. Cite this article:
Aims. Machine-learning (ML)
Aim. This study aimed to externally validate promising preoperative PJI
Aims. The aims of this study were to assess mapping models to predict the three-level version of EuroQoL five-dimension utility index (EQ-5D-3L) from the Oxford Knee Score (OKS) and validate these before and after total knee arthroplasty (TKA). Methods. A retrospective cohort of 5,857 patients was used to create the
Aim. Recurrence of bone and joint infection, despite appropriate therapy, is well recognised and stimulates ongoing interest in identifying host factors that predict infection recurrence. Clinical
The February 2023 Children’s orthopaedics Roundup. 360. looks at: Trends in management of paediatric distal radius buckle fractures; Pelvic osteotomy in patients with previous sacral-alar-iliac fixation; Sacral-alar-iliac fixation in patients with previous pelvic osteotomy; Idiopathic toe walking: an update on natural history, diagnosis, and treatment; A
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated
Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time
Aims. The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow. Methods. We developed the Shanghai