Over 300,000 total hip arthroplasties (THA) are performed annually in the USA. Surgical Site Infections (SSI) are one of the most common complications and are associated with increased morbidity, mortality and cost. Risk factors for SSI include obesity, diabetes and smoking, but few studies have reported on the predictive value of pre-operative blood markers for SSI. The purpose of this study was to create a clinical
Total knee arthroplasty (TKA) is the most commonly performed elective orthopaedic procedure. With an increasingly aging population, the number of TKAs performed is expected to be ∼2,900 per 100,000 by 2050. Surgical Site Infections (SSI) after TKA can have significant morbidity and mortality. The purpose of this study was to construct a risk
Fractures through the physis account for 18–30% of all paediatric fractures, leading to growth arrest in 5.5% of cases. We have limited knowledge to predict which physeal fractures result in growth arrest and subsequent deformity or limb length discrepancy. The purpose of this study is to identify factors associated with physeal growth arrest to improve patient outcomes. This prospective cohort study was designed to develop a clinical
Introduction. Previous studies have shown that third body damage to the femoral head in metal-on-polyethylene hip replacement bearings can lead to accelerated wear of the polyethylene liners. The resulting damage patterns observed on retrieved metal heads are typically scratches and scrapes. The damage created in vitro must represent the third body damage that occurs clinically. A computational model was developed to predict the acceleration of wear of polyethylene articulating against in vitro damaged femoral heads. This involved using a damage registry from retrieval femoral heads to develop standardized templates of femoral head scratches statistically representative of retrieval damage. The aim of this study was to determine the wear rates of polyethylene liners articulating against retrievals and artificially damaged metal heads for the purpose of validating a computational wear
Numerous prediction tools are available for estimating postoperative risk following spine surgery. External validation studies have shown mixed results. We present the development, validation, and comparative evaluation of novel tool (NZSpine) for modelling risk of complications within 30 days of spine surgery. Data was gathered retrospectively from medical records of patients who underwent spine surgery at Waikato Hospital between January 2019 and December 2020 (n = 488). Variables were selected a priori based on previous evidence and clinical judgement. Postoperative adverse events were classified objectively using the Comprehensive Complication Index. Models were constructed for the occurrence of any complication and significant complications (based on CCI >26). Performance and clinical utility of the novel model was compared against SpineSage (. https://depts.washington.edu/spinersk/. ), an extant online tool which we have shown in unpublished work to be valid in our local population. Overall complication rate was 34%. In the multivariate model, higher age, increased surgical invasiveness and the presence of preoperative anemia were most strongly predictive of any postoperative complication (OR = 1.03, 1.09, 2.1 respectively, p <0.001), whereas the occurrence of a major postoperative complication (CCI >26) was most strongly associated with the presence of respiratory disease (OR = 2.82, p <0.001). Internal validation using the bootstrapped models showed the model was robust, with an AUC of 0.73. Using sensitivity analysis, 80% of the
Aim. This study aimed to externally validate promising preoperative PJI
Aim. Recurrence of bone and joint infection, despite appropriate therapy, is well recognised and stimulates ongoing interest in identifying host factors that predict infection recurrence. Clinical
To explore a novel machine learning model to evaluate the vertebral fracture risk using Decision Tree model and train the model by Bone Mineral Density (BMD) of different compartments of vertebral body. We collected a Computed Tomography image dataset, including 10 patients with osteoporotic fracture and 10 patients without osteoporotic fracture. 40 non-fracture Vertebral bodies from T11 to L5 were segmented from 10 patients with osteoporotic fracture in the CT database and 53 non-fracture Vertebral bodies from T11 to L5 were segmented from 10 patients without osteoporotic fracture in the CT database. Based on the biomechanical properties, 93 vertebral bodies were further segmented into 11 compartments: eight trabecular bone, cortical shell, top and bottom endplate. BMD of these 11 compartments was calculated based on the HU value in CT images. Decision tree model was used to build fracture
Source of the study: University of Auckland, Auckland, New Zealand and University of Otago, Christchurch, New Zealand. The Oxford Knee Score (OKS) is a 12-item questionnaire used to track knee arthroplasty outcomes. Validation of such patient reported outcome measures is typically anchored to a single question based on patient ‘satisfaction’, however risk of subsequent revision surgery is also an important outcome measure. The OKS can predict subsequent revision risk within two years, however it is not known which item(s) are the strongest predictors. Our aim was to identify which questions were most relevant in the prediction of subsequent knee arthroplasty revision risk.
. All primary TKAs (n=27,708) and UKAs (n=8,415) captured by the New Zealand Joint Registry between 1999 and 2019 with at least one OKS response at six months, five years or ten years post-surgery were included. Logistic regression and receiver operating characteristics (ROC) curves were used to assess
Introduction. Diaphyseal tibial fractures account for approximately 1.9% of adult fractures. Several studies demonstrate a high proportion of diaphyseal tibial fractures have ipsilateral occult posterior malleolus fractures, this ranges from 22–92.3%. Materials and Methods. A retrospective review of a prospectively collected database was performed at Liverpool University Hospitals NHS Foundation Trust between 1/1/2013 and 9/11/2020. The inclusion criteria were patients over 16, with a diaphyseal tibial fracture and who underwent a CT. The articular fracture extension was categorised into either posterior malleolar (PM) or other fracture. Results. 764 fractures were analysed, 300 had a CT. There were 127 intra-articular fractures. 83 (65.4%) cases were PM and 44 were other fractures. On univariate analysis for PM fractures, fibular spiral (p=.016) fractures, no fibular fracture(p=.003), lateral direction of the tibial fracture (p=.04), female gender (p=.002), AO 42B1 (p=.033) and an increasing angle of tibial fracture. On multivariate regression analysis a high angle of tibia fracture was significant. Other fracture extensions were associated with no fibular fracture (p=.002), medial direction of tibia fracture (p=.004), female gender (p=.000), and AO 42A1 (p=.004), 42A2 (p=.029), 42B3 (p=.035) and 42C2 (p=.032). On multivariate analysis, the lateral direction of tibia fracture, and AO classification 42A1 and 42A2 were significant. Conclusions. Articular extension happened in 42.3%. A number of factors were associated with the extension, however multivariate analysis did not create a suitable
Introduction. A total knee replacement is a proven cost-effective treatment for end-stage osteoarthritis, with a positive effect on pain and function. However, only 80% of the patients are satisfied after surgery. It is known that high preoperative expectations and residual postoperative pain are important determinants of satisfaction, but also malalignment, poor function and disturbed kinematics can be a cause. The purpose of this study was to investigate the correlation between the preoperative function and the postoperative patient reported outcomes PROMs) as well as the influence of the postoperative functional rehabilitation on the PROMs. Methods. 57 patients (mean 62,9j ± 10,6j), who suffer from knee osteoarthritis and who were scheduled for a total knee replacement at our centre, participated in this study. The range of motion of the knee, the muscle strength of the M. Quadriceps and the M. Hamstrings and the functional parameters (‘stair climbing test’ (SCT), ‘Sit to stand’ (STS) and ‘6 minutes walking test’ (6MWT)) were measured the night before surgery, ±6 months and ±1 year after surgery. This happened respectively with the use of a goniometer, HHD 2, stopwatch and the ‘DynaPort Hybrid’. Correlations between pre- and postoperative values were investigated. Secondly, a prediction was made about the influence of the preoperative parameters on on the subjective questionnaires (KOOS, OXFORD and KSS) as well as a linear and logistic regression. Results. 6 Months after surgery, an improvement of all parameters for ROM, muscle strength and functional status was found. With a significant difference for the active and passive ROM toward knee flexion (p=0.007;p=0.008), asymmetry in active and passive ROM toward flexion between the healthy leg and the leg with the TKA (p=0.001;p=0.001), Quadriceps- and Hamstrings strength (p=0.001;p<0.001), time of the STS test (p=0.012), time sit-stand (p=0.002), time stand-sit (p=0.001;p<0.001), all parameters for the 6MWT and the time of the SCT (p=0.001). Regarding the
While total joint replacement (TJR) is considered as an effective intervention to relieve pain and restore joint function for end-stage osteoarthritis (OA) patients, a significant proportion of the patients are dissatisfied with their surgery outcomes. The aim of this study was to identify genetic factors that can predict patients who do or do not benefit from these surgical procedures by a genome-wide association study (GWAS). Study participants were derived from the Newfoundland Osteoarthritis Study (NFOAS) which consisted of 1086 TJR patients. Non-responders to TJR was defined as patients who did not reach the minimum clinically important difference (MCID) based on the self administered Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in terms of pain reduction or function improvment. DNA was extracted from the blood samples of the study participants and genotyped by Illumina GWAS genotyping platform. Over two million single nucleotide polymorphisms (SNPs) across the genome were genotyped and tested for assocition with non-responders. 39 non-responders and 44 age, sex, and BMI matched responders were included in this study. Four chromosome regions on chromosomes 5, 7, 8, and 12 were suggested to be associated with non-responders with p < 1 0–5. The most promising one was on chromosome 5 with the lead SNP rs17118094 (p=1.7×10–6) which can classify 72% of non-responders accurately. The discriminatory power of this SNP alone is very promising as indicated by an area under the curve (AUC) of 0.72 with 95% confidence interval of 0.63 to 0.81, which is much better than any previously studied predictors mentioned above. All the patients who carry two copies of the G allele (minor allele) of rs17118094 were non-responders and 75% of those who carry one copy of the G allele were non-responders. The discriminatory ability of the lead SNPs on chromosomes 7 and 12 were comparable to the one on chromosome 5 with an AUC of 0.74, and 88% of patients who carry two copies of the A allele of rs10244798 on chromosome 7 were non-responders. Similarly, 88% of patients who carry two copies of the C allele of rs10773476 on chromosome 12 were non-responders. While the discriminatory ability of rs9643244 on chromosome 8 was poor with an AUC of 0.26, its strong association with non-responders warrants a further investigation in the region. The study identified four genomic regions harboring genetic factors for non-responders to TJR. The lead SNPs in those regions have great discriminatory ability to predict non-responders and could be used to create a genetic
Introduction. Up to 60% of total hip arthroplasties (THA) in Asian populations arise from avascular necrosis (AVN), a bone disease that can lead to femoral head collapse. Current diagnostic methods to classify AVN have poor reproducibility and are not reliable in assessing the fracture risk. Femoral heads with an immediate fracture risk should be treated with a THA, conservative treatments are only successful in some cases and cause unnecessary patient suffering if used inappropriately. There is potential to improve the assessment of the fracture risk by using a combination of density-calibrated computed tomographic (QCT) imaging and engineering beam theory. The aim of this study was to validate the novel fracture prediction method against in-vitro compression tests on a series of six human femur specimens. Methods. Six femoral heads from six subjects were tested, a subset (n=3) included a hole drilled into the subchondral area of the femoral head via the femoral neck (University of Leeds, ethical approval MEEC13-002). The simulated lesions provided a method to validate the fracture
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons. Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes.Aims
Methods