Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 13 - 13
1 Sep 2012
Phillips P Willoughby R Phadnis J
Full Access

Slipped upper femoral epiphysis (SUFE) is an uncommon condition with potentially severe complications including avascular necrosis (AVN) and chondrolysis. Children with a ‘slip’ are at a significantly higher risk of a contralateral slip. Controversy remains as to when to undertake prophylactic pinning. The primary aim of this study was to assess the Posterior Sloping Angle (PSA, as described by Barrios et al in 2005) as a predictor for contralateral slip in a large, multi ethnic cohort. All consecutive patients treated for SUFE presenting to Waikato Hospital between January 2000 and December 2009 were identified via medical coding. Patients without radiographs and those with bilateral slips on presentation were excluded. Clinical records were reviewed to document demographic data, slip characteristics and follow up outcomes. Radiographic analysis of the PSA in the unaffected hip was performed by a single author. Statistical analysis was performed using a student's t-test with Microsoft Excel 2003. 182 patients were identified, 50 were excluded [26 bilateral slips, 24 no radiograph available] to total a study population of 132 patients. 93 patients were male [72%]. Mean age was 11.8 years [6.2–15.6 years]. 72% were of Maori ethnicity and 26% were of New Zealand European descent. 90 patients [69%] had a unilateral slip, 42 [32%] had a contralateral slip. 48% were not followed until physeal closure and 50% did not attend at least one scheduled appointment Mean PSA of those with a unilateral slip was 10.8° [2–21°]. Patients who subsequently developed a contralateral slip had a statistically significantly higher mean PSA of 17.2° [6–36°] [p<0.0001]. Children with a contralateral slip were significantly younger 11.1 years than those with a unilateral slip 12.2 years (p<0.0001). No significant differences in PSA were found between Maori and NZ European children. If a PSA of 14° was used as an indication for prophylactic fixation in this population 35/42 [83.3%] of contralateral slips would have been prevented. 19/90 hips would have been pinned unnecessarily. The number needed to treat demonstrates that 1.79 hips are prophylactically pinned to prevent one slip in this population. This large retrospective cohort study demonstrates that a PSA of 14° in an unaffected hip after one sided SUFE could warrant prophylactic pinning in an unaffected hip to prevent subsequent slip and the complications associated with this, potentially protecting a population that can be difficult to follow up


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 21 - 21
7 Nov 2023
Molepo M Hohmann E Oduoye S Myburgh J van Zyl R Keough N
Full Access

This study aimed to describe the morphology of the coracoid process and determine the frequency of commonly observed patterns. The second purpose was to determine the location of inferior tunnel exit with superior based tunnel drilling and the superior tunnel exit with inferior based tunnel drilling. A sample of 100 dry scapulae for the morphology aspect and 52 cadaveric embalmed shoulders for tunnel drilling were used. The coracoid process was described qualitatively and categorized into 6 different shapes. A transcoracoid tunnel was drilled at the centre of the base. Twenty-six shoulders were used for the superior-inferior tunnel drilling approach and 26 for the inferior-superior tunnel drilling approach. The distances to the margins of the coracoid process, from both the entry and exit points of the tunnel, were measured. Eight coracoid processes were of convex shape, 31 of hooked shape, 18 of irregular shape, 18 of narrow shape, 25 of straight shape, and 13 of wide shape. The mean difference for the distances between superior entry and inferior exit from the apex was Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation 3.65+3.51mm (p=0.002); 1.57+2.27mm for the lateral border (p=0.40) and 5.53+3.45mm for the medial border (p=0.001). The mean difference for the distances between inferior entry and superior exit from the apex was 16.95+3.11mm (p=0.0001); 6.51+3.2mm for the lateral border (p=0.40) and 1.03+2.32 mm for the medial border (p=0.045). The most common coracoid process shape observed was a hooked pattern. Both superior to inferior and inferior to superior tunnel drilling directed the tunnel from a more anterior and medial entry to a posterior-lateral exit. Superior to inferior drilling resulted in a more posteriorly angled tunnel. With inferior to superior tunnel drilling cortical breaks were observed at the inferior and medial margin of the tunnel


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 5 - 5
10 Feb 2023
Badurudeen A Mathai N Altaf D Mohamed W Deglurkar M
Full Access

The aim of this study is to analyse the radiological outcomes and predictors of avascular necrosis following 2-hole DHS in Garden I and II neck of femur fractures in patients more than 60 years with a minimum follow up of one year. We retrospectively reviewed 51 consecutive patients aged more than 60 years who underwent DHS fixation for Garden I and II fractures. Demographics, fracture classification, time to surgery, pre-operative AMTS, preoperative posterior tilt angle, quality of reduction, pre and post-operative haemoglobin(hb), creatinine and comorbidities were analysed for correlation with AVN using Chi-Square test, Independent Sample and paired t test. There were 40 (78.4%) females and the mean age of the cohort was 77 years. 28 and 23 were Garden I and II NOF fractures respectively. Union was observed in all our patients except one(kappa =1). 12/51(23.5%) developed AVN of the femoral head. Statistically significant higher incidence of AVN was noted in patients with a pre-op tilt angle > 200 (p = 0.006). The mean drop in Hb was higher in patients who developed AVN (21.5 g/L) versus the non-AVN group (15.9 g/L) (p = 0.001). There was no difference in AVN rates with respect to laterality, mean time to surgery, pre-op AMTS and Charlson comorbidity index. 4/52 (7.6%) had re-operations (one hardware prominence, two conversions to arthroplasty, one fixation failure during the immediate post-op period). The 30-day and one year mortality rates were 1.9 % and 11.7 % respectively. 2-hole DHS fixation in undisplaced NOF fractures has excellent union rates. A pre-operative posterior tilt angle of >200 and a greater difference in pre and post operative haemoglobin were found to correlate positively with the progression to AVN . No correlation was observed between AVN and time to surgery, laterality, quality of reduction and comorbidities


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 13 - 13
1 Nov 2022
Badurdeen A Mathai N Altaf D Mohamed W Deglurkar M
Full Access

Abstract. Background. The aim of this study is to analyse the radiological outcomes and predictors of avascular necrosis following 2-hole DHS in Garden I and II neck of femur fractures in patients >60 years with a minimum follow up of one year. Methods. We retrospectively reviewed 51 consecutive patients >60 years who underwent DHS fixation for Garden I and II fractures. Demographics, fracture classification, time to surgery, pre-operative AMTS, preoperative posterior tilt angle, quality of reduction, pre and post-operative haemoglobin (hb), creatinine and comorbidities were analysed. Results. There were 40 (78.4%) females and the mean age was 77 years. 28 and 23 were Garden I and II NOF fractures respectively. Union was observed in all our patients except one. 12/51(23.5%) developed AVN of the femoral head. Statistically significant higher incidence of AVN was noted in patients with a pre-op tilt angle > 20. 0. (p = 0.006). The mean drop in Hb was higher in patients who developed AVN (21.5 g/L) versus the non-AVN group (15.9 g/L) (p = 0.001). There was no difference in AVN with respect to laterality, mean time to surgery, pre-operative AMTS and Charlson comorbidity index. 4/52 (7.6%) had re-operations. The 30-day and one year mortality were 1.9 % and 11.7 % respectively. Conclusion. In our series a preoperative posterior tilt angle of >20. 0. and a drop in haemoglobin were found to correlate with the progression to AVN. No correlation was observed between AVN and time to surgery, laterality, quality of reduction and comorbidities


Introduction. A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA). We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA. Patients and methods. Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled. To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a). In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA. The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value. Results. The subjects were 4 knees in 4 males and 26 knees in 22 females. A mean age (for 30 knees) at the operation was 76.7 ± 6.1 years (range from 66.4 to 88.3). The posterior condylar angle was −0.27 ± 1.43, and the outlier, more than 3 degrees, was 1 case. Discussion. Conventionally, the SEA is palpated intraoperatively, however, the sulcus of the medial condyle sometimes cannot be identified precisely in osteoarthritic degeneration at the medial condyle. Also, the SEA is determined from the posterior condylar axis (PCA) by calculating the posterior condylar angle, which is between the SEA and the PCA, with the measurements from the preoperative CT scan. However, the residual cartilage thickness is not considered in this method, and thus, the SEA is possible to be inaccurate. The simple technology of our template allowed us to determine the SEA directly on the femoral surface, without any influence from bone degeneration. The femoral components could be implanted accurately, and therefore, the superimposed template was considered to improve TKA outcomes with the accurate SEA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 99 - 99
1 Feb 2020
Schroder F Post C Simonis F Wagenaar F in'tVeld RH Verdonschot N
Full Access

Introduction. Instability, loosening, and patellofemoral pain belong to the main causes for revision of total knee arthroplasty (TKA). Currently, the diagnostic pathway requires various diagnostic techniques such as x-rays, CT or SPECT-CT to reveal the original cause for the failed knee prosthesis, but increase radiation exposure and fail to show soft-tissue structures around TKA. There is a growing demand for a diagnostic tool that is able to simultaneously visualize soft tissue structures, bone, and TKA without radiation exposure. MRI is capable of visualising all the structures in the knee although it is still disturbed by susceptibility artefacts caused by the metal implant. Low-field MRI (0.25T) results in less metal artefacts and offers the ability to visualize the knee in weight-bearing condition. Therefore, the aim of this study is to investigate the possibilities of low field MRI to image, the patellofemoral joint and the prosthesis to evaluate the knee joint in patients with and without complaints after TKA. Method. Ten patients, eight satisfied and two unsatisfied with their primary TKA, (NexGen posterior stabilized, BiometZimmer) were included. The patients were scanned in sagittal, coronal, and transversal direction on a low field MRI scanner (G-scan Brio, 0.25T, Esaote SpA, Italy) in weight-bearing and non-weight-bearing conditions with T1, T2 and PD-weighted metal artefact reducing sequences (TE/TR 12–72/1160–7060, slice thickness 4.0mm, FOV 260×260×120m. 3. , matrix size 224×216). Scans were analysed by two observers for:. - Patellofemoral joint: Caton-Descamps index and Tibial Tuberosity-Trochlear Groove (TT-TG) distance. - Prosthesis malalignment: femoral component rotation using the posterior condylar angle (PCA) and tibial rotation using the Berger angle. Significance of differences in parameters between weight-bearing and non-weight-bearing were calculated with the Wilcoxon rank test. To assess the reliability the inter and intra observer reliability was calculated with a two-way random effects model intra class correlation coefficient (ICC). The two unsatisfied patients underwent revision arthroplasty and intra-operative findings were compared with MRI findings. Results. In the satisfied group, a significant difference was found between TT-TG distance in non-weight-bearing and weight-bearing condition (p=0.018), with a good interrater reliability ICC=0.89. Furthermore, differences between weight-bearing and non-weight-bearing were found for the CD ratio, however, not significant (p=0.093), with a good interrater reliability ICC=0.89. The Berger angle could be measured with an excellent interrater reliability (ICC=0.94). The PCA was hard to assess with a poor interrater reliability (ICC=0.48). For one unsatisfied patient a deviation was found for tibial component rotation, according to the perioperative findings as, ‘malposition of the tibial component’. For the other unsatisfied patient revision surgery was performed due to aseptic loosening in which the MRI showed a notable amount of synovitis. Conclusion. It is possible to image the patellofemoral joint and knee prosthesis with low field MRI. Patellofemoral measurements and tibial component rotation measurements can reliably be performed. For the two patients with complaints MRI findings were consistent with intra-operative findings. Further research should focus on a larger group of patients with complaints after TKA to verify the diagnostic capacity of low field MRI for peri-prosthetic knee problems. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 35 - 35
1 Oct 2012
Sakai T Koyanagi J Yamazaki T Watanabe T Sugano N Yoshikawa H Sugamoto K
Full Access

The in vivo kinematics of squatting after total hip arthroplasty (THA) has remained unclear. The purpose of the present study was to elucidate range of motion (ROM) of the hip joint and the incidence of prosthetic impingement during heels-down squatting after THA. 23 primary cementless THAs using a computed tomography-based navigation system (CT-HIP, Stryker Navigation, Freiberg, Germany) were investigated using fluoroscopy. An acetabular component with concavities around the rim (TriAD HA PSL, Stryker Orthopaedics, Mahwah, NJ) and a femoral component with reduced neck geometry (CentPiller, Stryker Orthopaedics), which provided a large oscillation angle, were used. The femoral head size was 28mm (8 hips), 32mm (10 hips), and 36mm (5 hips). Post-operative analysis was performed within 6 months in 6 hips, and at 6 months to 2 years in 17 hips. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to three-dimensional computer aided design models of the acetabular and femoral components using a two-dimensional to three-dimensional (2D/3D) registration technique. In the previous computer simulation study of THA, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of prosthetic impingement during squatting. We also estimated changes in the flexion angle of the acetabular component, which represented the pelvic posterior tilting angle (PA), and the flexion angle of the femoral component, which represented the femoral flexion angle (FA). The contribution of the PA to the FA at maximum squatting was evaluated as the pelvic posterior tilting ratio (PA/FA). In addition, when both components were positioned most closely during squatting, we estimated the minimum angle (MA) up to theoretical prosthetic impingement. No prosthetic impingement occurred in any hips. The maximum hip flexion ROM was mean 92.7° (SD; 15.7°, range; 55.1°–119.1°) and was not always consisted with the maximum squatting. The maximum pelvic posterior tilting angle (PA) was mean 27.3° (SD; 11.0°, range; 5.5°–46.5°). The pelvis began to tilt posteriorly at 50°–70° of the hip flexion ROM. The maximum femoral flexion angle (FA) was mean 118.9° (SD; 10.4°, range; 86.4°–136.7°). At the maximum squatting, the ratio of the pelvic posterior tilting angle to the femoral flexion angle (pelvic posterior tilting ratio, PA/FA) was mean 22.9% (SD; 10.4%, range; 3.8%–45.7%). The minimum angle up to the theoretical prosthetic impingement was mean 22.7° (SD; 7.5°, range; 10.0°–37.9°). The maximum hip flexion of ROM in 36 mm head cases was larger than that in 32 mm or 28 mm head cases, while the minimum angle up to the prosthetic impingement in 36 mm head cases was also larger than that in 32 mm or 28 mm head cases. Three-dimensional assessment of dynamic squatting motion after THA using the 2D/3D registration technique enabled us to elucidate hip ROM, and to assess the prosthetic impingement, the contribution of the pelvic posterior tilting, and the minimum angle up to theoretical prosthetic impingement during squatting


Aim. The aim of this study is to evaluate the effect of three-dimensional (3D) simulation with 3D planning software ZedKnee® (ZK) in total knee arthroplasty (TKA). Materials and methods. The participants in this study were all TKA patients whose operations were simulated by using ZK. The alignment of all components was evaluated with the ZK valuation software in postoperative computer tomography. Thirty patients (43 knees) met the inclusion criteria. 6 patients were male and 24 patients were female. The mean age of the 30 patients was 72 years old. Diagnoses for surgery were: osteoarthritis- 40 knees, rheumatoid arthritis- 2 knees and osteonecrosis- 1 knee. TKA was performed using the measured resection technique. The distal femur axis where the intramedullary rod would be inserted was drawn manually on the 3D image. Then, the angle between the distal femoral axis and the mechanical axis was measured. The rotational angles of the femoral components were determined from the automatically calculated angle between the posterior condylar axis and the surgical epicondylar axis (SEA) by using ZK. The ZK data used during the operation was the posterior condylar angle, the angle between the distal femoral axis and the mechanical axis and implant size. Results. The angle in coronal plane between the 3D mechanical axis and the distal femoral axis in preoperative planning ranged between 3 degrees and 11 degrees, mean 6.7 (SD 2.2) degrees. The postoperative femoral component alignment was on average 0.7 (SD 1.3) degrees in varus. Outlier of more than 3 degrees in coronal alignment was recognized in 3 cases (7%). The mean posterior condylar angle in preoperative planning was 3.8 (SD 1) degrees. The postoperative femoral component alignment was on average 1.5 (SD 1.6) degrees in external rotation to surgical epicondylar axis. Outlier of more than 3 degrees in rotational alignment was recognized in 6 cases (14%). The concordance rate between the preoperative planning size and the intraoperative selective size was 91%. Discussion. Some errors may be observed in the preoperative TKA X-ray planning, because of the rotational position of the femur while having the X-ray taken or angle of the X-ray beam. Kanekasu et al reported the measurement of the condylar twist angle during the X-ray and it was relatively correct compared with the measurement during CT. Max 1.9 degrees error occurred in the measurements using X-rays. It appeared that preoperative planning using CTs was more accurate than using X-rays. Conclusion. Femoral components with 3D simulation using ZK were fixed perpendicularly against the mechanical axis and parallel to the surgical epicondylar axis with high accuracy. We considered that the ZK 3D simulation in TKA is useful for the accurate alignment of femoral components


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 559 - 559
1 Dec 2013
Thienpont E
Full Access

Background. Finding the anatomical landmarks used for correct femoral rotational alignment can be difficult. The Posterior Condylar Line (PCL) is probably the easiest to find during surgery. The aim of this study was to analyze if a predetermined fixed angle referencing of the PCL could help obtain good femoral alignment in TKA patients. Methods. 2637 CT scans used for preoperative planning and creation of patient-specific instrumentation (PSI) were used to analyze the Posterior Condylar Angle (PCA) between the Surgical Epicondylar Axis (SEA) and the PCL. Results. The mean PCA was 3.99° +/− 1.35° of external rotation. A significant relation was found between more external rotation and more varus of the tibia and more valgus of the femur. In 132 patients bilateral CT's were available and 94 (71%) had rotation within 1° of the opposite side. 96% of patients would receive the right amount of external rotation with 6°. On 105 (4%) CT's external rotation between 7° to 11° was measured and 77 (73%) of those were in varus or neutral alignment. Conclusions. After substracting a correction of 1° for cartilage remnants, a posterior condylar angle of 5° external rotation is proposed which should cover 96% of the population. For 4% of patients, both varus and valgus knees, 5° of external rotation will not be sufficient. The epicondylar axis should be explored during surgery, determined with patient-specific instruments, or a balancer should be used for this group


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 105 - 105
1 May 2016
De Ladoucette A
Full Access

Purpose. External rotation of the femoral component is one factor that favors a satisfactory clinical result. New technologies have been developed to precisely implant the components of a total knee arthroplasty, including computer-assisted surgery (CAS) and patient-specific instruments (PSIs). The aim of this study was to compare the precision of CAS and PSIs when determining the orientation of the femoral component. Methods. A total of 65 patients operated on in 2008 with CAS had pre- and post-operative computed tomography (CT) in which the posterior condylar angle (PCA) was measured. The same pre- and post-operative measurements were performed for 27 patients operated on in 2010 with the assistance of PSI. For both populations, the antero-posterior femoral cuts were directed to implant the femoral component 3° of external rotation from the pre-operative posterior condylar line (PCL). Results. The pre-operative parameters for both groups were identical. The post-operative PCA was not significantly different between the CAS and PSI groups, but the pre- to post-operative difference in PCA for the PSI group indicated a diminution of 2 ± 2° compared to no change in the CAS group. A total of 28% of the patients operated on with CAS had their femoral component more internally rotated after the surgery compared to the pre-operative measurements. Conclusion. Both PSI and CAS achieve the same objective of externally rotate the femoral component in the transversal plan, even if CAS, some femoral components still remains less rotated than the plan


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 132 - 132
1 Mar 2017
Sakai T Koyanagi J Takao M Hamada H Sugano N Yoshikawa H Sugamoto K
Full Access

INTRODUCTION. The purpose of this study is to elucidate longitudinal kinematic changes of the hip joint during heels-down squatting after THA. METHODS. 66 patients with 76 primary cementless THAs using a CT-based navigation system were investigated using fluoroscopy. An acetabular component and an anatomical femoral component were used through the mini-posterior approach with repair of the short rotators. The femoral head size was 28mm (9 hips), 32mm (12 hips), 36mm (42 hips), and 40mm (12 hips). Longitudinal evaluation was performed at 3 months, 1 year, and 2≤ years postoperatively. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to 3D-CAD models of the components using a2D/3D registration technique. In this system, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of bony and/or prosthetic impingement during squatting (Fig.1). We also estimated changes in the pelvic posterior tilting angle (PA) using the acetabular component position change. In addition, when both components were positioned most closely during squatting, we estimated the minimum angle (MA) up to theoretical prosthetic impingement as the safety margin (Fig.2). RESULTS. No prosthetic or bony impingement and no dislocation occurred in any hips. The mean maximum hip flexion ROM was 92.4° (range, 76.6° – 107.9°) at 3 months, 103.4° (range, 81.5° – 115.2°) at 1 year, and 102.4° (range, 87.1° – 120.6°) at 2≤ years (3 months vs 1 year, p<0.05; 1 year vs 2≤ years, p>0.05, paired t-test). The mean PA was 26.7° (range, 0.9° – 49.8°) at 3 months, 21.7° (range, 3.4° – 43.8°) at 1 year, and 21.2° (range, −0.7° – 40.4°) at 2≤ years (3 months vs 1 year, p<0.05; 1 year vs 2≤ years, p>0.05). The mean flexion ROM and MA at 2≤ years were 98.4±20.8° and 14.3±7.3° in 28 mm heads, 102.3±10.7° and 15.6±4.8° in 32 mm heads, 102.8±14.5° and 20.3±9.6° in 36 mm heads, and 103.2±16.9° and 23.4±10.9° in 40 mm heads, respectively. There were no significant differences in the hip flexion ROM between 28, 32, 36, and 40 mm head cases, whereas MA significantly increased as the femoral head diameter was larger (p<0.05, unpaired t-test). DISCUSSION AND CONCLUSION. Three-dimensional assessment of dynamic squatting motion after THA using the 2D/3D registration technique enabled us to elucidate longitudinal kinematic change of the hip joint. Longitudinal kinematic analysis indicated that hip flexion ROM and posterior tilt during squatting changed significantly by 1 year postoperatively, and there were no significant changes after 1 year while safety margin kept > 10°. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 88 - 88
1 Jan 2016
Van Der Straeten C Van Onsem S Callens R Slabbaert M Victor J
Full Access

Background. The use of Computed Tomography (CT) as a medical imaging tool has widespread applications in the field of knee surgery. Surgeons use a CT scan in a conventional way during the pre-operative stage, to plan the position of the femoral component in the horizontal plane. In the post-operative stage, the use of a CT scan is a routine tool in the evaluation of failed TKA as rotational malalignment of the femoral component has been determined as a cause of poor clinical outcome after TKA. Aim. How accurately can we measure the different angles with importance for alignment on a 3D-image in comparison to a standard CT, 2D, image. Material and methods. This study includes patients above 55 years of age who were scheduled for a TKA at our centre and who had a pre- and postoperative full-leg length computed tomography (CT). These images were analysed using Mimics V 16.0 ® and 3-matic V 8.0 ® (Materialise, Haasrode, Belgium) to create the surface reconstruction and perform the 3D-measurements. Different angles were measured pre- and post-operatively on these images both in 2D as in 3D: condylar twist angle (CTA), posterior condylar angle (PCA), hip-knee-ankle angle (HKA), tibiofemoral rotation angle (TFRA), posterior tilt of the tibial implant (STPA) and the frontal plane angle of the tibial implant (FTPA). A power analysis showed a needed sample size of 18 patients. Pre-operatively 21 patients were included, 18 of them also received a post-operative full-leg CT. Three observers participated in the study and they all performed all analyses twice with a minimum interval of one week for obtaining intra-observer repeatability. Statistical analysis was performed to obtain the intra- and interobserver variability. Results. The intra-and interobserver intra-class coefficients (ICC) were evaluated using the classification of Landis&Koch (see table). Preoperative results: Rotation of femoral component in 3D: ICC CTA=0,73; ICC PCA=0,66. Rotation in 2D: ICC PCA=0,75, ICC CTA=0,84. The highest ICC was found for the HKA: ICC>0,98 both 2D and 3D. Postoperative results. All ICC's are in the highest category (‘almost perfect’) except for the intraobserver ICC PCA in 2D which was ‘substantial’. Conclusions and clinical implications. CT-evaluation is invaluable for the preoperative planning of the position of the femoral component, for the evaluation of the rotation of the femoral component and for accurate assessment of the overall knee alignment,. This study demonstrates low intra- and inter- observer variability in the CT measurement of the pre- and postoperative alignment of the knee. To determine the rotation of the femoral component preoperatively there was no advantage for 3D over 2D. Post-operatively the use of the 3D technique has a lower variability with regard to the assessment of the rotation of the femoral component


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 332 - 332
1 Dec 2013
Shaetty S Kumar A Gupta S
Full Access

Purpose. To validate accuracy of transepicondylar axis as a reference for femoral component rotation in primary total knee arthroplasty. Methods. A prospective study done from dec 2010 to dec 2011 at tertiary centre. 80 knees were included (43 females and 21 males). All surgeries were carried out by one senior arthroplasty surgeon. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view. Postoperative TEA was assessed by taking CT scan, measuring condylar twist angle and posterior condylar angle. Also correlation of femoral component rotation with postoperative anterior knee pain was assessed. Results. The mean PCA was around 4° with TEA as reference and only 10% patients required an additional lateral release of which 2% patient had preop patellar maltracking. No postoperative patellar maltracking was seen. Anterior knee pain was present in 8% patients. No postop infection is noted. Alignment ranging from 3° to 9° external rotation. Conclusion. TEA is most accurate reference for femoral component rotation even in severely deformed arthritic knees. Key words – Transepicondylar axis, total knee arthroplasty, femoral component rotation,


Purpose:. To compare accuracy of transepicondylar axis as a reference for femoral component rotation in primary navigated versus non navigated total knee arthroplasty in severely deformed knees. Methods:. A prospective study done from dec 2009 to dec 2011 at tertiary centre. 180 knees were included (124 females and 56 males). All cases were randomly allocated into 2 groups: navigated and non navigated. All surgeries were carried out by two senior arthroplasty surgeons. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view in Non navigated knees. Postoperative TEA was assessed by taking CT scan, measuring condylar twist angle and posterior condylar angle (PCA). Results:. The mean PCA was around 4° with TEA as reference in Navigated and 6° in Non navigated knees and only 7% patients required an additional lateral release of which 2% patient had preop patellar maltracking. No postoperative patellar maltracking was seen. Anterior knee pain was present in 10% patients. No postop infection is noted. Alignment ranging from 4° to 8° external rotation. Conclusion:. Navigation is most accurate measure for TEA as reference, as compared to non navigated TKA, which can lead to excessive external rotation especially in severely deformed knees


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 202 - 202
1 Mar 2013
Ishimaru M Hino K Miura H
Full Access

Introduction. The efficacy and accuracy of computer navigation systems in total knee arthroplasty (TKA) have been proven in recent years. However, potential disadvantages associated with navigation systems, such as increased surgical time and registration errors, have been reported. Currently, we use a navigation system only for the femoral side. We use the conventional extramedullary guide system for the tibial side (hybrid navigation method) because we have increased the accuracy of tibial positioning in the coronal plane with the conventional system by considering the following key points. (1) Set the extramedullary alignment guide to avoid the rotational mismatch between the proximal part of the tibia and the ankle joint. (2) Insert the tibial component along the AP axis of the resected surface. (3) Remove the protruding bone at the antero-lateral edge of the tibia to obtain the flat, resected surface of the tibia. The purpose of this study was to determine the accuracy of the hybrid navigation method. Methods. We compared the postoperative alignment of 60 TKAs implanted using the conventional alignment guide system with 30 TKAs implanted using the hybrid image-free navigation method. The average age was 74.2 (range, 50 to 85) years in the conventional group and 73.6 (range, 51 to 84) years in the hybrid group. The intramedullary alignment guide was used for the femur in the conventional group. The knees were evaluated using full-length, weight-bearing anteroposterior radiographs. Results. For the conventional group, the mean coronal tibial component angle was 89.9 ± 1.09 degrees (range, 88.0 to 92.0 degrees) (Fig. 1b). The ideal angle within 3 degrees for the tibial component was obtained in 100% of the cases. The mean posterior inclination angle was 83.7 degrees. The mean coronal femoral angle was 90.5 ± 2.06 degrees (range, 84.0 to 96.0 degrees) (Fig. 1a). The ideal angle within 3 degrees for the femoral component was obtained in 85.0% of the cases. For the hybrid navigation group, the mean coronal tibial component angle was 89.6 ± 0.73 degrees (range, 88.0 to 91.0 degrees) (Fig. 2b). The ideal angle within 3 degrees for the tibial component was obtained in 100% of the cases. The mean coronal femoral component angle was 89.4 degrees (range, 86.0 to 92.0 degrees) (Fig. 2a). The ideal coronal angle within 3 degrees for the femoral component was obtained in 96.7% of the cases. Discussion and Conclusion. Our results demonstrated the accuracy of coronal tibial component positioning with the conventional extramedullary alignment guide system by considering the key points described above. However, the accuracy of femoral component positioning with the conventional intramedullary rod is limited. Therefore, the hybrid navigation method could be an alternative to reduce surgical time while maintaining the accuracy of the tibial component positioning. In conclusion, we recommend the hybrid navigation method in total knee arthroplasty