Slipped upper femoral epiphysis (SUFE) is an uncommon condition with potentially severe complications including avascular necrosis (AVN) and chondrolysis. Children with a ‘slip’ are at a significantly higher risk of a contralateral slip. Controversy remains as to when to undertake prophylactic pinning. The primary aim of this study was to assess the
This study aimed to describe the morphology of the coracoid process and determine the frequency of commonly observed patterns. The second purpose was to determine the location of inferior tunnel exit with superior based tunnel drilling and the superior tunnel exit with inferior based tunnel drilling. A sample of 100 dry scapulae for the morphology aspect and 52 cadaveric embalmed shoulders for tunnel drilling were used. The coracoid process was described qualitatively and categorized into 6 different shapes. A transcoracoid tunnel was drilled at the centre of the base. Twenty-six shoulders were used for the superior-inferior tunnel drilling approach and 26 for the inferior-superior tunnel drilling approach. The distances to the margins of the coracoid process, from both the entry and exit points of the tunnel, were measured. Eight coracoid processes were of convex shape, 31 of hooked shape, 18 of irregular shape, 18 of narrow shape, 25 of straight shape, and 13 of wide shape. The mean difference for the distances between superior entry and inferior exit from the apex was Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation 3.65+3.51mm (p=0.002); 1.57+2.27mm for the lateral border (p=0.40) and 5.53+3.45mm for the medial border (p=0.001). The mean difference for the distances between inferior entry and superior exit from the apex was 16.95+3.11mm (p=0.0001); 6.51+3.2mm for the lateral border (p=0.40) and 1.03+2.32 mm for the medial border (p=0.045). The most common coracoid process shape observed was a hooked pattern. Both superior to inferior and inferior to superior tunnel drilling directed the tunnel from a more anterior and medial entry to a posterior-lateral exit. Superior to inferior drilling resulted in a more
The aim of this study is to analyse the radiological outcomes and predictors of avascular necrosis following 2-hole DHS in Garden I and II neck of femur fractures in patients more than 60 years with a minimum follow up of one year. We retrospectively reviewed 51 consecutive patients aged more than 60 years who underwent DHS fixation for Garden I and II fractures. Demographics, fracture classification, time to surgery, pre-operative AMTS, preoperative
Abstract. Background. The aim of this study is to analyse the radiological outcomes and predictors of avascular necrosis following 2-hole DHS in Garden I and II neck of femur fractures in patients >60 years with a minimum follow up of one year. Methods. We retrospectively reviewed 51 consecutive patients >60 years who underwent DHS fixation for Garden I and II fractures. Demographics, fracture classification, time to surgery, pre-operative AMTS, preoperative
Introduction. A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA). We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA. Patients and methods. Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled. To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a). In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA. The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value. Results. The subjects were 4 knees in 4 males and 26 knees in 22 females. A mean age (for 30 knees) at the operation was 76.7 ± 6.1 years (range from 66.4 to 88.3). The
Introduction. Instability, loosening, and patellofemoral pain belong to the main causes for revision of total knee arthroplasty (TKA). Currently, the diagnostic pathway requires various diagnostic techniques such as x-rays, CT or SPECT-CT to reveal the original cause for the failed knee prosthesis, but increase radiation exposure and fail to show soft-tissue structures around TKA. There is a growing demand for a diagnostic tool that is able to simultaneously visualize soft tissue structures, bone, and TKA without radiation exposure. MRI is capable of visualising all the structures in the knee although it is still disturbed by susceptibility artefacts caused by the metal implant. Low-field MRI (0.25T) results in less metal artefacts and offers the ability to visualize the knee in weight-bearing condition. Therefore, the aim of this study is to investigate the possibilities of low field MRI to image, the patellofemoral joint and the prosthesis to evaluate the knee joint in patients with and without complaints after TKA. Method. Ten patients, eight satisfied and two unsatisfied with their primary TKA, (NexGen posterior stabilized, BiometZimmer) were included. The patients were scanned in sagittal, coronal, and transversal direction on a low field MRI scanner (G-scan Brio, 0.25T, Esaote SpA, Italy) in weight-bearing and non-weight-bearing conditions with T1, T2 and PD-weighted metal artefact reducing sequences (TE/TR 12–72/1160–7060, slice thickness 4.0mm, FOV 260×260×120m. 3. , matrix size 224×216). Scans were analysed by two observers for:. - Patellofemoral joint: Caton-Descamps index and Tibial Tuberosity-Trochlear Groove (TT-TG) distance. - Prosthesis malalignment: femoral component rotation using the
The in vivo kinematics of squatting after total hip arthroplasty (THA) has remained unclear. The purpose of the present study was to elucidate range of motion (ROM) of the hip joint and the incidence of prosthetic impingement during heels-down squatting after THA. 23 primary cementless THAs using a computed tomography-based navigation system (CT-HIP, Stryker Navigation, Freiberg, Germany) were investigated using fluoroscopy. An acetabular component with concavities around the rim (TriAD HA PSL, Stryker Orthopaedics, Mahwah, NJ) and a femoral component with reduced neck geometry (CentPiller, Stryker Orthopaedics), which provided a large oscillation angle, were used. The femoral head size was 28mm (8 hips), 32mm (10 hips), and 36mm (5 hips). Post-operative analysis was performed within 6 months in 6 hips, and at 6 months to 2 years in 17 hips. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to three-dimensional computer aided design models of the acetabular and femoral components using a two-dimensional to three-dimensional (2D/3D) registration technique. In the previous computer simulation study of THA, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of prosthetic impingement during squatting. We also estimated changes in the flexion angle of the acetabular component, which represented the pelvic
Aim. The aim of this study is to evaluate the effect of three-dimensional (3D) simulation with 3D planning software ZedKnee® (ZK) in total knee arthroplasty (TKA). Materials and methods. The participants in this study were all TKA patients whose operations were simulated by using ZK. The alignment of all components was evaluated with the ZK valuation software in postoperative computer tomography. Thirty patients (43 knees) met the inclusion criteria. 6 patients were male and 24 patients were female. The mean age of the 30 patients was 72 years old. Diagnoses for surgery were: osteoarthritis- 40 knees, rheumatoid arthritis- 2 knees and osteonecrosis- 1 knee. TKA was performed using the measured resection technique. The distal femur axis where the intramedullary rod would be inserted was drawn manually on the 3D image. Then, the angle between the distal femoral axis and the mechanical axis was measured. The rotational angles of the femoral components were determined from the automatically calculated angle between the posterior condylar axis and the surgical epicondylar axis (SEA) by using ZK. The ZK data used during the operation was the
Background. Finding the anatomical landmarks used for correct femoral rotational alignment can be difficult. The Posterior Condylar Line (PCL) is probably the easiest to find during surgery. The aim of this study was to analyze if a predetermined fixed angle referencing of the PCL could help obtain good femoral alignment in TKA patients. Methods. 2637 CT scans used for preoperative planning and creation of patient-specific instrumentation (PSI) were used to analyze the
Purpose. External rotation of the femoral component is one factor that favors a satisfactory clinical result. New technologies have been developed to precisely implant the components of a total knee arthroplasty, including computer-assisted surgery (CAS) and patient-specific instruments (PSIs). The aim of this study was to compare the precision of CAS and PSIs when determining the orientation of the femoral component. Methods. A total of 65 patients operated on in 2008 with CAS had pre- and post-operative computed tomography (CT) in which the
INTRODUCTION. The purpose of this study is to elucidate longitudinal kinematic changes of the hip joint during heels-down squatting after THA. METHODS. 66 patients with 76 primary cementless THAs using a CT-based navigation system were investigated using fluoroscopy. An acetabular component and an anatomical femoral component were used through the mini-posterior approach with repair of the short rotators. The femoral head size was 28mm (9 hips), 32mm (12 hips), 36mm (42 hips), and 40mm (12 hips). Longitudinal evaluation was performed at 3 months, 1 year, and 2≤ years postoperatively. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to 3D-CAD models of the components using a2D/3D registration technique. In this system, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of bony and/or prosthetic impingement during squatting (Fig.1). We also estimated changes in the pelvic
Background. The use of Computed Tomography (CT) as a medical imaging tool has widespread applications in the field of knee surgery. Surgeons use a CT scan in a conventional way during the pre-operative stage, to plan the position of the femoral component in the horizontal plane. In the post-operative stage, the use of a CT scan is a routine tool in the evaluation of failed TKA as rotational malalignment of the femoral component has been determined as a cause of poor clinical outcome after TKA. Aim. How accurately can we measure the different angles with importance for alignment on a 3D-image in comparison to a standard CT, 2D, image. Material and methods. This study includes patients above 55 years of age who were scheduled for a TKA at our centre and who had a pre- and postoperative full-leg length computed tomography (CT). These images were analysed using Mimics V 16.0 ® and 3-matic V 8.0 ® (Materialise, Haasrode, Belgium) to create the surface reconstruction and perform the 3D-measurements. Different angles were measured pre- and post-operatively on these images both in 2D as in 3D: condylar twist
Purpose. To validate accuracy of transepicondylar axis as a reference for femoral component rotation in primary total knee arthroplasty. Methods. A prospective study done from dec 2010 to dec 2011 at tertiary centre. 80 knees were included (43 females and 21 males). All surgeries were carried out by one senior arthroplasty surgeon. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view. Postoperative TEA was assessed by taking CT scan, measuring condylar twist
Purpose:. To compare accuracy of transepicondylar axis as a reference for femoral component rotation in primary navigated versus non navigated total knee arthroplasty in severely deformed knees. Methods:. A prospective study done from dec 2009 to dec 2011 at tertiary centre. 180 knees were included (124 females and 56 males). All cases were randomly allocated into 2 groups: navigated and non navigated. All surgeries were carried out by two senior arthroplasty surgeons. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view in Non navigated knees. Postoperative TEA was assessed by taking CT scan, measuring condylar twist
Introduction. The efficacy and accuracy of computer navigation systems in total knee arthroplasty (TKA) have been proven in recent years. However, potential disadvantages associated with navigation systems, such as increased surgical time and registration errors, have been reported. Currently, we use a navigation system only for the femoral side. We use the conventional extramedullary guide system for the tibial side (hybrid navigation method) because we have increased the accuracy of tibial positioning in the coronal plane with the conventional system by considering the following key points. (1) Set the extramedullary alignment guide to avoid the rotational mismatch between the proximal part of the tibia and the ankle joint. (2) Insert the tibial component along the AP axis of the resected surface. (3) Remove the protruding bone at the antero-lateral edge of the tibia to obtain the flat, resected surface of the tibia. The purpose of this study was to determine the accuracy of the hybrid navigation method. Methods. We compared the postoperative alignment of 60 TKAs implanted using the conventional alignment guide system with 30 TKAs implanted using the hybrid image-free navigation method. The average age was 74.2 (range, 50 to 85) years in the conventional group and 73.6 (range, 51 to 84) years in the hybrid group. The intramedullary alignment guide was used for the femur in the conventional group. The knees were evaluated using full-length, weight-bearing anteroposterior radiographs. Results. For the conventional group, the mean coronal tibial component angle was 89.9 ± 1.09 degrees (range, 88.0 to 92.0 degrees) (Fig. 1b). The ideal angle within 3 degrees for the tibial component was obtained in 100% of the cases. The mean