Revision surgeries for orthopaedic infections are done in two stages – one surgery to implant an antibiotic spacer to clear the infection and another to install a permanent implant. A permanent
Introduction. The ability to create patient-specific implants (PSI) at the point-of-care has become a desire for clinicians wanting to provide affordable and customized treatment. While some hospitals have already adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments, recent innovations have allowed for the printing of high-temperature implantable polymers including polyetheretherketone (PEEK). With interest in FFF PEEK implants growing, it is important to identify methods for printing favorable implant characteristics such as porosity for osseointegration. In this study, we assess the effect of porous geometry on the cell response and mechanical properties for FFF-printed porous PEEK. We also demonstrate the ability to design and print customized
Introduction. Cementless total knee arthroplasty (TKA) has several advantages compared to the cemented approach, including elimination of bone cement, a quicker and easier surgical technique, and potentially a stronger long-term fixation. However, to ensure the successful long-term biological fixation between the
Surface coatings have been introduced to total joint orthopaedics over the past decades to enhance osseointegration between metal implants and bone. However, complications such as aseptic loosening and infection persist. Inadequate osseointegration remains a complication associated with implants that rely on osseointegration for proper function. This is particularly challenging with implants having relatively flat and small surface areas that have high shear loading, such as noncemented uni and total condylar knee tibial trays. Faster osseointegration can enhance recovery as a result of improved load distribution and a more stable bone-implant interface. Traditionally noncemented porous bone ingrowth coatings on knee, hip and shoulder implants are typically texturised by thermal plasma spray coating, sintered metal bead coatings, or 3-D additive manufactured structures that provide porous surface features having the rough texture with pore sizes on the order of 150 to 300 micrometers. These surfaces are often further chemically enhanced with hydroxyapatite (HA) deposition. This provides macro-mechanical (millimeter scale) and micro-mechanical (micrometer scale) bone remodeling into the implant surface. However, at the nanoscale and cellular level, these surfaces appear relatively smooth. More recent studies are showing the importance of controlling the macro, micro, and the nano (nanometer scale) surface topographies to enhance cell interaction. In vitro and in vivo research shows surfaces with nanoscale features in the metal substrate result in enhanced osseointegration, greater bone-implant contact area and pullout force, and potentially bactericidal. One surface modification treatment technique of particular promise is nano-texturing via electrochemical anodization to bio-mimicking TiO2 nanotube arrays that are superimposed onto existing porous surface microstructures to further enhance the already known bone ingrowth properties of these porous structures by superimposing onto the existing microstructure arrays of nanotubes approximately 100 nanometers in outside diameter and 300–500 nanometers in height. In an ovine model, 3-D printed Direct Metal Laser Deposition (DMLS) additive manufactured
OSSTEC is a pre-spin-out venture at Imperial College London seeking industry feedback on our orthopaedic implants which maintain bone quality in the long term. Existing orthopaedic implants provide successful treatment for knee osteoarthritis, however, they cause loss of bone quality over time, leading to more dangerous and expensive revision surgeries and high implant failure rates in young patients. OSSTEC tibial implants stimulate healthy bone growth allowing simple primary revision surgery which will provide value for all stakeholders. This could allow existing orthopaedics manufacturers to capture high growth in existing and emerging markets while offering hospitals and surgeons a safer revision treatment for patients and a 35% annual saving on lifetime costs. For patients, our implant technology could mean additional years of quality life by revising patients to a primary TKA before full revision surgery. Our implants use patent-filed additive manufacturing technology to restore a healthy mechanical environment in the proximal tibia; stimulating long term bone growth. Proven benefits of this technology include increased bone formation and osseointegration, shown in an animal model, and restoration of native load transfer, shown in a human cadaveric model. This technology could help capture the large annual growth (24%) currently seen in the cementless knee reconstruction market, worth $1.2B. Furthermore, analysis suggests an additional market of currently untreated younger patients exists, worth £0.8B and growing by 18% annually. Making revision surgery and therefore treatment of younger patients easier would enable access to this market. We aim to offer improved patient treatment via B2B sales of implants to existing orthopaedic manufacturer partners, who would then provide them with instrumentation to hospitals and surgeons. Existing implant materials provide good options for patient treatments, however OSSTEC's porous titanium structures offer unique competitive advantages; combining options for modular design, cementless fixation, initial bone fixation and crucially long term bone maintenance. Speaking to surgeons across global markets shows that many surgeons are keen to pursue bone preserving surgeries and the use of
Porous surfaces on orthopaedic implants have been shown to promote tissue ingrowth. This study evaluated biological fixation of novel additively manufactured
Introduction. The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer
Introduction. Porous scaffolds for bone ingrowth have numerous applications, including correcting deformities in the foot and ankle. Various materials and shapes may be selected for bridging an osteotomy in a corrective procedure. This research explores the performance of commercially pure Titanium (CPTi) and Tantalum (Ta) porous scaffold materials for use in foot and ankle applications under simplified compression loading. Methods. Finite element analysis was performed to evaluate von Mises stress in 3
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and
Purpose. Durable fixation may be difficult to achieve when significant bone loss is present, as it occurs in pelvic sarcoma resection and revision surgery of tumor implants. Purpose of this study was to review clinical results of primary and revision surgery of the pelvis and lower extremity in the setting of severe bone loss following limb salvage procedures for bone sarcoma using modular
As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in preoperative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. A classification of femoral deficiency has been developed and an algorithmic approach to femoral reconstruction is presented. An extensively coated, diaphyseal filling component reliably achieves successful fixation in the majority of revision femurs. The surgical technique is straightforward and we continue to use this type of device in the majority of our revision total hip arthroplasties. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Based on our results, the following reconstructive algorithm is recommended for femoral reconstruction in revision total hip arthroplasty. Type I: In a Type I femur, there is minimal loss of cancellous bone with an intact diaphysis. Cemented or cementless fixation can be utilised. If cemented fixation is selected, great care must be taken in removing the neo-cortex often encountered to allow for appropriate cement intrusion into the remaining cancellous bone. Type II: In a Type II femur, there is extensive loss of the metaphyseal cancellous bone and thus, fixation with cement is unreliable. In this cohort of patients, successful fixation was achieved using a diaphyseal fitting, extensively
The interest in osteolysis has waned largely due to the impact of crosslinked polyethylene and the “rarity” of this phenomenon. However, the basic process still remains: particles, motion observed with unstable implants and host specific factors all play a role in bone loss around implants. There are 2 predominant patterns of lysis: Linear versus Expansile. Linear Lysis: is focal bone loss at the interface as seen in the bone cement interface in when using acrylic or at the implant-host interface with porous ingrowth/ongrowth implants. Expansile Lysis: is observed in less contained regions such as the retro- and supra-acetabular regions around the socket. These lesions can also be quite extensive yet may be subtle in appearance. Imaging is essential in identifying the extent and magnitude of osteolysis. Available modalities include plain radiographs although they can be of limited value in that even with oblique views, they often underestimate the degree of bone loss. CT scans are useful but can be limited by artifact. Several centers have explored the role of MRI in assessing lysis. It can be useful for bone loss and provides excellent assessment for soft tissue: abductors, neurovascular structures. Metal artifact reduction sequencing is required to maximise information obtainable. Management of osteolysis: Identification and monitoring periprosthetic osteolysis is a crucial element of patient care. Progressive bone loss leading to loss of fixation and the potential risk for periprosthetic fracture is a real possibility and early recognition and intervention is a priority. The basic Guiding Principles of management are centered around several key elements including the source of osteolysis and degree, the fixation of implant, the location of lysis, the track record of implant system, the presence of patient symptoms (if any), and finally the patient age, activity level, and general health. Specifics of treatment of osteolysis around the acetabulum: With cemented sockets, lysis is typically seen late and frequently at the bone-cement interface. It is often associated with a loose implant and the prime indication for surgery may be pain. Treatment involves implant removal and revision with an uncemented cup and bone grafting or augmentation as needed. With uncemented sockets in the setting of osteolysis, there are several factors to consider. These have been stratified by Rubash, Maloney, and Paprosky. The treatment of these sockets has been summarised as follows: for Type I and Type II with limited lysis, lesional treatment such as debridement and bone grafting with head and polyethylene exchange has been suggested. WATCH for impingement!!!! Graft defects via trap-doors can be performed but make the door big enough to graft. Small doors and grafting through screw holes is at best marginal. In instances of compromised locking mechanisms, consider cementing the liner into the shell. For Type II and Type III implants, revision of the component is recommended. With the currently available cementless cup extraction tools, I rarely hesitate to remove a cup with moderate lysis and a broken locking mechanism: better access to lytic areas, better grafting achieved. CAVEAT #1: the disadvantage of implant removal is that it is clearly a bigger procedure and fixation of the new implant may be more difficult. Risks vs. rewards. CAVEAT #2: Socket revision in the setting of failed MOM implants has some unique “issues”. In the Vancouver series, almost 25% of the revision cups failed to achieve biologic fixation. As such, recommendation for using “enhanced”
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into
INTRODUCTION: As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in pre-operative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. DISCUSSION: An extensively coated, diaphyseal filling component reliably achieves successful fixation in the majority of revision femurs. The surgical technique is straightforward and we continue to use this type of device in the majority of our revision total hip arthroplasties. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Based on our results, the following reconstructive algorithm is recommended for femoral reconstruction in revision total hip arthroplasty: TYPE I: In a Type I femur, there is minimal loss of cancellous bone with an intact diaphysis. Cemented or cementless fixation can be utilised. If cemented fixation is selected, great care must be taken in removing the neo-cortex often encountered to allow for appropriate cement intrusion into the remaining cancellous bone. TYPE II: In a Type II femur, there is extensive loss of the metaphyseal cancellous bone and thus fixation with cement is unreliable. In this cohort of patients, successful fixation was achieved using a diaphyseal fitting, extensively
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into
Introduction. Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly
It is very important to fix implant to bone. Bioactive materials as hydroxyapatite or glass-ceramics have bone-bonding ability. Hydroxyapatite-coating is applied to cementless THA or TKA. I and coworkers investigated bone-bonding mechanism of bioactive material and found that bone-like apatite formation play key role for bonding. If the surface of metal is changed to form apatite on it in body, the inert metal changes into bone-bonding material. We developed alkaline and heat treatment of titanium to change titanium to bone –bonding material as follows. At first, titanium is dipped in 5N NaOH solution for 24 hours, at second the metal is washed in pure water and finally it is sintered in 500 degree C for 2 hours. The treated surface has bioactivity, bone bonding ability like hydroxyapatite. The advantage of this treatment over hydroxyapatite-coating procedure is to treat the porous surface without any change of pore figures. As to hydroxyapatite-coating procedure, pore of the small diameter is filled with hydroxyapatite and pore figures are change. We applied this alkaline and heat treatment to cementless THA and its good results of more than ten years was reported. Porous titanium can be changed to bioactive material by alkaline and heat treatment. This bioactive porous titanium was found to have a property of material-induced osteoinduction, that is, the bone formation in pore of
Clearly uncemented hip stems are becoming more popular. They are working relatively well and avoiding the step of cementation is easier and much quicker. However, this speaker feels that well designed femoral stems with 25–30 years of proven successful fixation are perfectly good for elderly patients with 10, 15, and 20 year life expectancies. They are good for several reasons. They seal off bleeding from the femur essentially completely—particularly helpful in high anticoagulation patients. Also, addition of antibiotic cement would be expected to have a lower infection rate, and cases of gross osteopenia can be less likely to have fractures or undesired subsidence. There are a few basic points which can make a big difference in the quality of hip stem cementation. These points are: (1) After ordinary broaching, loose, mechanically incompetent bone needs to be removed. This is well done with canal brushes and large angled curettes. (2) The canal must be plugged distally a centimeter or two beyond the tip of the femoral prosthesis. (3) The femoral cavity needs to be as dry as possible at the time of cement introduction. This is one of the more difficult tasks to achieve perfectly. First is pulse lavage with an intramedullary nozzle. Next, I use epinephrine soaked sponges pulled completely out to length and introduced to fill the cavity completely—filling retrograde and packing tightly. Shortly before the cement is to be introduced, the epi sponges are changed to dry ones with the same type of firm, retrograde filling. The canal is commonly dried twice occasionally three times. Cement introduction: (1) A cement gun with long intramedullary nozzle is mandatory. (2) The cement must not be too runny, i.e. of too low a viscosity. You will have more trouble maintaining pressurisation with liquid runny cement, and you risk bleeding from the bone into the cement cavity significantly compromising the cementation. (3) The cement must be introduced retrograde with complete filling i.e. no voids, and not running out of cement to inject before the tip of the nozzle has reached the introitus, the entry point to the femoral cavity. Otherwise you wind up pulling out the nozzle itself out, leaving a void. (4) “Pressurisers,” that is, almost all that I have seen, do not really facilitate pressurisation. Once the canal is completely full with cement and the cement is getting stiffer, pressurisation by pushing at the introitus using your thumb over a lap pad creates tremendous pressurisation that can push cement beyond most cement plugs!. Introducing the femoral component: (1) Last, the femoral component is introduced rather slowly so that one maintains constant pressurisation by virtue of the volume displacement as the component goes to its proper level. Ideally the femoral component reaches its proper level just before the cement is really hard. You really can do this as you get the component 0.5 to1.0 cm. from the final level and impact it slowly as the cement comes to nearly complete hardness. The two worst things you can do—
. 1. Have the prosthesis reach its desired level with the cement relatively runny and have the bone bleed into the cement and degrade the quality of the cement interdigitation. 2. Being too slow getting the prosthesis down to the desired level and having it stuck to high. Consistent, optimum cementation of the femoral component is difficult, but achievable and worth it! You have a component with good stress transfer, no undesired proximal stress shielding like some
Aim. Implant-associated infection remains one of the biggest challenges facing orthopaedics and there is an urgent clinical need to develop new prophylactic strategies. We have previously shown that CSA-90, a broad-spectrum antimicrobial, prevented infection in an infected open fracture model. In this study we developed a novel model of implant-associated infection, in which to further test the potential of CSA-90 as a prophylactic agent. Method. All studies were approved by the local animal ethics committee. 3D-printed