Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CUSTOMIZABLE 3D PRINTING OF PEEK IMPLANTS WITH POROSITY BASED ON TRIPLY PERIODIC MINIMAL SURFACES

International Society for Technology in Arthroplasty (ISTA) meeting, New Early-Career Webinar Series (NEWS), held online, November 2020.



Abstract

Introduction

The ability to create patient-specific implants (PSI) at the point-of-care has become a desire for clinicians wanting to provide affordable and customized treatment. While some hospitals have already adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments, recent innovations have allowed for the printing of high-temperature implantable polymers including polyetheretherketone (PEEK). With interest in FFF PEEK implants growing, it is important to identify methods for printing favorable implant characteristics such as porosity for osseointegration.

In this study, we assess the effect of porous geometry on the cell response and mechanical properties for FFF-printed porous PEEK. We also demonstrate the ability to design and print customized porous implants, specifically for a sheep tibial segmental defect model, based on CT images and using the geometry of triply periodic minimal surfaces (TPMS).

Methods

Three porous constructs – a rectilinear pattern and gyroid/diamond TPMSs – were designed to mimic trabecular bone morphology and manufactured via PEEK FFF. TPMSs were designed by altering their respective equation approximations to achieve desired porous characteristics, and the meshes were solidified and shaped using a CAD workflow. Printed samples were mCT scanned to determine the resulting pore size and porosity, then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated, and the samples were imaged via SEM. The structures were tested in compression, and stiffness and yield strength values were determined from resulting stress-strain plots. Roughness was determined using optical profilometry. Finally, our process of porous structure design/creation was modified to establish a proof-of-concept workflow for creating PSIs using geometry established from segmented sheep tibia CT images.

Results

ALP activity measurements of the porous PEEK samples at 7 and 14 days were significantly greater than for solid controls (p < 0.001 for all three designs, 14 days). No difference between the porous geometries was found. SEM imaging revealed cells with flat, elongated morphology attached to the surface of the PEEK and into the pore openings, with filopodia and lamellipodia extensions apparent.

mCT imaging showed average pore size to be 545 ± 43 µm (porosity 70%), 708 ± 64 µm (porosity 68%), and 596 ± 94 µm (porosity 69%) for the rectilinear, gyroid, and diamond structures, respectively. The average error between the theoretical and actual values was −16.3 µm (pore size) and −3.3 % (porosity). Compression testing revealed elastic moduli ranging from 210 to 268 MPa for the porous samples. Yield strengths were 6.6 ± 1.2 MPa for lattice, 14.8 ± 0.7 MPa for gyroid, and 17.1 ± 0.6 for diamond. Average roughness ranged from 0.8 to 3 µm. Finally, we demonstrated the ability to design and print a fully porous implant with the geometry of a sheep tibia segment. Assessments of implant geometrical accuracy and mechanical performance are ongoing.

Discussion

We created porous PEEK with TPMS geometries via FFF and demonstrated a positive cellular response and mechanical characteristics similar to trabecular bone. Our work offers an innovative approach for advancing point-of-care 3D printing and PSI creation.