A primary goal of shoulder arthroplasty is to place the components in anatomic version. However, traditional instrumentation does not accommodate glenoid wear patterns. Therefore, many investigators have attempted to use computer modeling or CT-based algorithms to create custom targeting guides to achieve this goal. There are some recent studies investigating the use of custom guides. Iannotti et al. published in JBJS-American in 2012 on the use of
Introduction:. Total knee arthroplasty (TKA) is an effective operation for the management of osteoarthritis of the knee. Conventional technique utilizing manual instrumentation (MI) allows for reproducible and accurate execution of the procedure. The most common techniques make use of intramedullary femoral guides and either extrameduallary or intrameduallary tibial guides. While these methods can achieve excellent results in the majority of patients, those with ipsilateral hardware, post-traumatic deformity or abnormal anatomy may preclude the accurate use of these techniques. Patient-specific instrumentation (PSI) is an alternative innovation for total knee arthroplasty. Utilizing magnetic resonance imaging (MRI) or computed tomography (CT), custom guide blocks are fabricated based on a patient's unique anatomy. This allows for the benefits of computer assisted navigation (CAN) but without the increased operative times or the high learning curve associated with it. Furthermore it allows the use of familiar cutting blocks and guides to check the accuracy of the PSI guide blocks. In this study we sought to evaluate the accuracy of PSI techniques in patients with previous ipsilateral hardware, which would make the use of MI technically challenging and possibly subject to inaccuracy. Methods:. After reviewing our database of 300 PSI total knee arthroplasty patients, 16 patients were identified (10 male, 6 female) using the Zimmer NexGen
INTRODUCTION:. Despite clear clinical advantages Unicompartimetal Knee Replacement still remain an high demanding and less forgiving surgical procedure. Different Authors in literature pointed out how malalignment increases the rate of aseptic failure even more than in TKR. Computer-assisted surgery has been proposed to improve implant positioning in joint replacement surgery with no need of intramedullary guide despite no still proven clinical advantages. Likewise more recently
Introduction:.
Introduction.
Introduction.
Introduction:.
Background. In our pursuit of surgical accuracy and precision we often neglect to evaluate our results objectively. With the use of Computerised Tomography (CT) in pre-operative planning we can use the same technology in order to evaluate surgical accuracy. Hypothesis. The use of
Recent innovations in total ankle replacement (TAR) have led to improvements in implant survivorship, accuracy of component positioning and sizing, and patient outcomes. CT-generated pre-operative plans and cutting guides show promising results in terms of placement enhancement and reproducibility in clinical studies. The purpose of this study was to determine the accuracy of 1) implant sizes used and 2) alignment corrections obtained intraoperatively using the cutting guides provided, compared to what was predicted in the CT generated pre-operative plans. This is a retrospective study looking at 36 patients who underwent total ankle arthroplasty using a CT generated pre-operative planning system between July 2015 and December 2017. Personalized pre-operative planning data was obtained from the implant company. Two evaluators took measurements of the angle corrected using pre- and post-operative weight bearing ankle AP X-rays. All patients had a minimum three-month follow-up with weightbearing postoperative radiographs. The actual correction calculated from the radiographic assessment was compared with the predicted angles obtained from pre-operative plans. The predicted and predicted alternative component sizes and actual sizes used were also compared. If either a predicted or predicted alternative size was implanted, we considered it to be accurate. Average age for all patients was 64 years (range 40–83), with a body mass index of 28.2 ± 5.6. All surgeries were performed by two foot and ankle surgeons. The average total surgical time was 110 ± 23 minutes. Pre-operative alignment ranged from 36.7 degrees valgus to 20 degrees varus. Average predicted coronal alignment correction was 0.8 degrees varus ± 9.3 degrees (range, 18.2 degrees valgus to 29 degrees varus) and average correction obtained was 2.1 degrees valgus ± 11.1 degrees. Average post-op alignment was consistently within 5 degrees of neutral. There were no significant differences between the predicted alignments and the postoperative weightbearing alignments. The predicted tibia implant size was accurate in all cases. The predicted sizes were less accurate for talar implants and predicted the actual talar implant size used in 66% of cases. In all cases of predicted talar size mismatch, surgical plans predicted 1 implant size larger than used. Preliminary analyses of our data is comparable to previous studies looking at similar outcomes. However, our study had higher pre-operative deformities. Despite that, post-op alignments were consistently within 5 degress of neutral with no significant difference between the predicted and actual corrections. Tibial implant sizes are highly accurate while talar implant sizes had a trend of being one size smaller than predicted. Moreover, this effect seems to be more pronounced in the earlier cases likely reflective of increasing surgeon comfort with the implant with each subsequent case. These results confirm that pre-operative cutting guides are indeed helpful in intra-operative implant selection and positioning, however, there is still some room for innovation.
A preoperative planning for accurately predicting the size and alignment of the prosthetic components may allow to perform a precise, efficient and reproducible total knee replacement. The planning can be carried out using as a support digital radiographic images or CT images with three-dimensional reconstruction. Aim of this prospective study is to evaluate and compare the accuracy of two different types of pre-operative planning, in determining the size of the femoral and tibial component in total knee arthroplasty performed with Patient Specific Instrument (PSI). The two compared techniques were: digital radiography and “CT-Based”. A prospective study was conducted to compare the accuracy in predicting the size of the prosthetic components in total knee replacement in 71 patients diagnosed with primary and symptomatic osteoarthritis of the knee. Inclusion criteria was “Easy Knee”: BMI ≤ 35, varus/valgus deviation ≤15° and residual flexion of the knee ≥ 90°. Pre-operatively all the patients underwent to the same standard protocol including digital radiographs with calibration and a CT scan. A dedicated IMPAX digital software (Agfa-Gevaert, NV, USA) was used to template the radiographs. The CT-based planning was performed on 3D reconstruction of CT scans of 3 joints: hip, knee and ankle, as established in standardised protocol to build up patient specific cutting mask (MyKnee, Medacta, Castel S. Pietro, Switzerland). All the surgeries were performed by 2 senior Authors (M.A and N.C.) using the same implant and the definitive component sizes implanted were registered and compared with the sizes suggested by both planning techniques considering also the range of error. Results analysis was carried out using nonparametric tests.INTRODUCTION
MATERIALS AND METHODS
Accurate placement of the acetabular component during total hip
arthroplasty (THA) is an important factor in the success of the
procedure. However, the reported accuracy varies greatly and is
dependent upon whether free hand or navigated techniques are used.
The aim of this study was to assess the accuracy of an instrument
system that incorporates 3D printed, patient-specific guides designed
to optimise the placement of the acetabular component. A total of 100 consecutive patients were prospectively enrolled
and the accuracy of placement of the acetabular component was measured
using post-operative CT scans.Aims
Patients and Methods
Abstract. Background. Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered.
The medial opening-wedge high tibial osteotomy (OW-HTO) is an accepted option to treat the isolated medial compartment osteoarthritis (OA) in varus knee. Despite satisfactory outcomes were described in literature, consistent complication rate has been reported and the provided accuracy of coronal alignment correction using conventional HTO techniques falls short.
CT-based three-dimensional (3D) pre-operative imaging along with 2D orthogonal sections defined by the plane of the scapula (axial, sagittal and coronal planes) has been demonstrated by many research groups to be a very accurate way to define the bone pathology and alignment/subluxation of the humeral head in relationship to the center line of the scapula or the center of the glenoid fossa. When 3D CT imaging is combined with 3D implant templating the surgeon is best able to define the optimal implant and its location for the desired correction of the bone abnormalities. The use and value of 3D imaging is best when the there is more severe bone pathology and deformity. Transferring the computer-based information of implant location to the surgical site can involve multiple methods. The three methods discussed in the literature to date including use of standard instrumentation in a manner specified by the pre-operative planning, use of single-use
The emergence of
Introduction. This is a multi-centre, prospective, observational study of 503 INFINITY fixed bearing total ankle arthroplasties. We report the minimum two-year results of this prosthesis which was introduced to the UK Market in 2014 and is now the most used ankle arthroplasty in the National Joint Registry of England and Wales. Methods. Patients were recruited from 11 centres in the United Kingdom between June 2016 and November 2019. Demographic, radiographic, and functional outcome data (Ankle Osteoarthritis Scale, Manchester Oxford Foot Ankle Questionnaire and Euroquol 5D-5L) were collected preoperatively, at 6 months, 1 year and 2 years and 5 years. The average age was 67.8 (range 23.9 to 88.5) and average BMI 29.3 (18.9 to 48.0). The COFAS grading system was used to stratify deformity. There were 261 (51.9%) COFAS Type 1, 122 (24.2%) COFAS Type 2, 31 (6.2%) COFAS 3 and 89 (17.7%) COFAS type 4. 38 patients (7.6%) presented with inflammatory arthritis. 99 (19.7%) implantations utilised
Aim. To asses the accuracy of total knee replacements performed using CT based
Contemporary techniques to perform total knee arthroplasty use either conventional instrumentation with intramedullary and extramedullary referencing or use a computer navigation system that requires insertion of femoral and tibial tracking pins and an intra-operative registration process. Much of the initial enthusiasm for computer navigation in TKA has waned as many of these systems have proved cumbersome, time consuming and expensive with no substantial evidence of a clinical benefit.
Introduction. Given the association of osteoarthritis with obesity, the typical patient requiring total knee arthroplasty (TKA) is often obese. Obesity has been shown to negatively influence outcomes following TKA, as it is associated with increased perioperative complications and poorer clinical and functional outcomes. Achieving proper limb alignment can be more difficult in the obese patient, potentially requiring a longer operation compared to non-obese
Abstract. Background. Conventional TKR aims for neutral mechanical alignment which may result in a smaller lateral distal femoral condyle resection than the implant thickness. We aim to explore the mismatch between implant thickness and bone resection using 3D planning software used for