The objective of this study was to compare the early migration
characteristics and functional outcome of the Triathlon cemented
knee prosthesis with its predecessor, the Duracon cemented knee
prosthesis (both Stryker). A total 60 patients were prospectively randomised and tibial
component migration was measured by radiostereometric analysis (RSA)
at three months, one year and two years; clinical outcome was measured
by the American Knee Society score and the Knee Osteoarthritis and
Injury Outcome Score.Objectives
Methods
Purpose. Total knee replacement is the one of the most performed surgeries. However, patient's satisfaction rate is around 70–90 % only. The sacrifice of cruciate ligament might be the main reason, especially in young and active patients. ACL stabilizes the knee by countering the anterior displacing and pivoting force, absorbs the shock and provides proprioception of the knee. However, CR knees has been plagued by injury of PCL during the surgery and preservation of the ACL is a demanding technique. Stiffness is more common comparing to PS designed knee. To insert a tibial baseplate with PE is usually thicker than 8 mm comparing to 2–4 mm of removed tibial bone. The stuffing of joint space may put undue tension on preserved ACL and PCL. Modern designed BCR has been pushed onto market with more sophisticated design and instrumentation. However, early results showed high early loosening rate. Failure to bring the tibia forward during cementing may be the main cause. The bone island where ACL footprint locates is frequently weak, intraoperative fracture happens frequently. A
Introduction:. For reconstructive surgery of the deteriorated rheumatoid MCP-joints silastic implants are used in general. Though realignment and stability after silastic joint replacement is achieved many disadvantages as reduced ROM, fractures and osteolysis are known. The first study of the cement less, non-constrained MCP-arthroplasty with HM-prosthesis showed a high rate of subluxation and synovitis. Therefore the design of the HM-prosthesis was changed with a PE-head to avoid wear and an increase of the diameter of the phalangeal base of 30% to get more stability. In prospective study we replaced 20 MCP joints in RA with this
Introduction: Current existing joint designs, principally flexible silastic spacers, satisfy the initial requirements but commonly lack durability. In particular all flexible silastic joints are prone to early breakage due to abrasion against bone and constant loading of the central section of the flexible implants. The aim of our new small joint design is to overcome many of the deficiencies of the flexible silastic designs while maintaining their main advantage of stabilising joint alignment throughout the flexion range. Aim: To investigate the wear properties of the new small joint design in both static and dynamic applied loads using finite element analysis (FEA). Materials: The design is essentially a cross between a flexible spacer and a surface replacement, whereby the spanning flexible spacer is located within the long axes of direct load bearing metacarpal and phalangeal ‘housings’. We have investigated a number of parameters, using finite element analysis (FEA), focussing principally upon the load bearing and wear properties of the
The aim of this study is to evaluate the early results of gleno-humeral reconstruction after tumour excision with a
Aims: To study clinical outcome of patients treated with a
Pedicle screws fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. However their positioning remain difficult due to variation in anatomical shape, dimensions and orientation, which can determine the inefficacy of treatment or severe damages to close neurologic structures. Image guided navigation allows to drastically decrease errors in screw placement but it is used only by few surgeons due to its cost and troubles related to its using, like the need of a localizer in the surgical scenario and the need of a registration procedure. An alternative image guided approach, less expensive and less complex, is the using of patient specific templates similar to the ones used for dental implants or knee prosthesis. Like proposed by other authors we decided to design the templates using CT scans. (slice thickness of 2.0 mm). Template developing is done, for each vertebra, using a modified version of ITK-SNAP 1.5 segmentation software, which allow to insert cylinders (full or empty) in the segmented images. At first we segment the spine bone and then the surgeon chose screw axes using the same software. We design each template with two hollow cylinders aligned with the axes, to guide the insertion in the pedicle, adding contact points that fit on the vertebra, to obtain a template right positioning. Finally we realize the templates in ABS using rapid prototyping. After same in-vitro tests, using a synthetic spine (by Sawbones), we studied a solution to guarantee template stability with simple positioning and minimizing intervention invasiveness. Preliminary ex-vivo animal testing on porcine specimens has been conducted to evaluate template performance in presence of soft-tissue in place, simulating dissection and vertebra exposure. For verification, the surgeon examined post-operative CT-scans to evaluate Kirschner wires positioning. During the ex-vivo animal test sessions, template alignment resulted easy thanks to the spinous process contact point. Their insertion required no additional tissue removal respect to the traditional approach. The positioning of contact points on vertebra's lamina and articular processes required just to shift the soft tissue under the cylinders bases. The surgeon in some cases evaluated false stable template positions since not each of the 4 contact points were actually in contact with the bone surface and tried the right position. CT evaluation demonstrate a positive results in 96.5% of the Kirschner wires implanted. Our approach allows to obtain patient specific templates that does not require the complete removal of soft tissue around vertebra. Guide positioning is facilitated thanks to the using of the spinous processes contact point, while false stable positions can be avoided using four redundant contact points. The templates can be used to guide the drill, the insertion of Kirschner in case of use of cannulated screws or to guide directly the screw. After these preliminary ex-vivo animal tests we obtained the authorization of the Italian Health Ministry to start the human study.
Design and materials selection and optimisation are the-factors affecting the performance of the modern TKR. In this study new surface treatments were performed and investigated on CoCrMo with the goal to minimize the wear in a new total knee prosthesis design. Three surface finishing treatments were considered and applied to cast CoCrMo alloy specimens. A surface polishing treatment performed by mass finishing technique was applied on machined CoCrMo. ACoCrMo coating, obtained by Magnetron Sputtering Physical Vapour Deposition (PVD) technique, was applied on mass finished CoCrMo specimens. Conventional hand polishing performed by silicon carbide papers followed by a final diamond past polishing was considered as reference material. For this study not cross-linked not sterilized UHMWPE was used. Surface morphology obtained by the surface treatments was investigated by SEM, Atomic Force Microscopy, and non contact laser profilometry. The microstructure and micro-hardness of CoCrMo alloy was investigated as well. Wear tests were performed in bovine serum using two screening wear test machines. A final wear test was performed on the new knee pros-thesis design using a knee wear simulator, up to five millions cycles. CoCrMo PVD coating performed on CoCrMo substrate was capable to eliminate and to fill all the surface defects originated by the casting process of the CoCrMo alloy. Such surface defects could not be eliminated by hand polishing or mass finishing process alone. Vickers micro-hardness was improved by the mass finishing treatment. Although the roughness measured on the mass finished specimens was not the lowest, screening wear test produced for them the best results. Wear simulator test performed on the mass finished knee femoral prostheses sliding against UHMWPE, confirmed very low UHMWPE wear generation. The mass finishing surface treatment applied to cast CoCrMo alloy specimens and femoral components is capable to polish the surface to the level required by standards. The PVD coating investigated was capable to improve the surface morphology of the alloy and to eliminate all the surface micro defects. Nevertheless, the screening wear tests indicated that the mass finishing treatment generate the lowest wear. The results were confirmed by wear simulator test. This study indicated that the mass finishing surface treatment can be effectively applied for the polishing of the femoral components of knee prosthesis.
Introduction: When introducing new joint replacement designs, it is difficult to predict with any certainty the clinical performance of the
The design of the femoral prosthesis in cementless total hip arthroplasty is known to affect the initial strains in the cortex during implantation and in the early postoperative time period. High strains have a direct influence on periprosthetic fracture. This study compares the existing ABGII stem, which is proximally coated with a grit blasted titanium surface with hydroxyapatite coating with a prototype that has a rougher titanium plasma spray proximal coating. The Australian National Joint registry results 2011 reported the ABG2 femoral component cumulative percent revision (CPR) of 6.5 (93.5% survival), which compares favourably with equivalent stems with 10 year CPR data such as the Taperloc 6.6 and Corail 7.3. Six pairs of fresh-frozen cadaveric femurs were mounted in blocks according to ISO guidelines in single leg stance setup. Five strain gauges were attached around the neck of the femur and then prepared according to routine operative techniques to accept the femoral prosthesis. Cortical strains were measured during insertion of the prosthesis with an instrumented mallet attached to an accelerometer. Subsequently, force-displacement readings were taken during cyclical loading on a servo-hydraulic machine and finally the stems were tested to failure. Our results showed significantly less strain during cyclical loading of the stem with increased surface roughness (p < 0.05). They also showed no significant differences loads/strains during impaction (p = 0.159), no significant difference in micromotion (p = 0.148) and no significant difference in load-to-failure (p = 0.37).
Back pain impinges upon all aspects of life, has a reported UK lifetime prevalence as high as 84% and considering approximately a third of our lives are spent asleep the paucity of research into the effect a mattress has on back pain and sleep is surprising. Mood changes, effecting an increase in pain perception, due to sleep loss may also lead to a downward spiral of increasing back pain and greater sleep loss. A controllable factor in this spiral, affecting both aspects, is the mattress but to the authors' knowledge none currently available on the market have any robust, published research to objectively support any claims made and at best being ‘endorsed’ by experts. This may lead to possible misinterpretation of efficacy and leave professionals at a loss with what to advise when questioned. Method: A three month, randomised, controlled, double blind crossover field study is proposed to take place in the participants own homes, ensuring the most natural sleep environment. Data collection: Three 28 day phases 1 - Baseline data, participants sleeping on their own mattress 2 - Random allocation of mattresses, half allocated test and half control 3 - Crossover of test and control mattress Subjective measures of back pain and sleep quality will be collected utilising a daily sleep diary and visual analogue scales. Objective measures of sleep quality using activity monitors during sleep.Purpose and Background
Methods and Data collection
Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a
Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a
Hip fractures frequently occur in elderly patients with osteoporosis and are rapidly increasing in prevalence owing to an increase in the elderly population and social activities. We experienced several recent presentations of TFNA nails failed through proximal locking aperture which requires significant revision surgery in often highly co-morbid patient population. The study was done by retrospective data collection from 2013 to 2023 of all the hip fractures which had been fixed with Cephalomedullary nails to review and compare Gamma (2013–2017) and TFNA (2017–2023) failure rates and the timing of the failures. Infected and Elective revision to Arthroplasty cases were excluded. The results are 1034 cases had been included, 784 fixed with TFNA and 250 cases fixed Gamma nails. Out of the 784 patients fixed with TFNA, 19 fixation failed (2.45%). Out of the 250 cases fixed with Gamma nails, 15 fixation failed (6%). Mean days for fixation failure were 323 and 244 days in TFNA and Gamma nails respectively. We conclude that TFNA showed remarkable less failure rates if compared to Gamma nails. At point of launch, testing was limited and no proof of superiority of TFNA over Gamma nail. Several failures identified with proximal locking aperture in TFNA which can be related to the
Background. Scapular notching is a complication after reverse shoulder arthroplasty with a high incidence up to 100%. Its clinical relevance remains uncertain; however, some studies have reported that scapular notching is associated with an inferior clinical outcome. There have been no published articles that studied positional relationship between the scapular neck and polyethylene insert in vivo. The purpose of this study was to measure the distance between the scapular neck and polyethylene insert in shoulders with Grammont type reverse shoulder arthroplasty during active external rotation at the side. Methods. Eighteen shoulders with Grammont type prosthesis (Aequalis Reverse, Tornier) were enrolled in this study. There were 13 males and 5 female, and the mean age at surgery was 74 years (range, 63–91). All shoulders used a glenosphere with 36mm diameter, and retroversion of the humeral implant was 10°in 4 shoulders, 15°in 3 shoulders, and 20°in 11 shoulders. Fluoroscopic images were recorded during active external rotation at the side from maximum internal to external rotation at the mean of 14 months (range, 7–24) after surgery. The patients also underwent CT scans, and three-dimensional glenosphere models with screws and scapula neck models were created from CT images. CT-derived models of the glenosphere and computer-aided design humeral implant models were matched with the silhouette of the implants in the fluoroscopic images using model-image registration techniques (Figure 1). Based on the calculated kinematics of the implants, the closest distance between the scapular neck and polyethylene insert was computed using the scapular model and computer-aided design insert models (Figure 2). The distance was computed at each 5° increment of glenohumeral internal/external rotation, and the data from 20°internal rotation to 40°external rotation were used for analyses. One-way repeated-measures analysis of variance was used to examine the change of the distance during the activity, and the level of significance was set at P < 0.05. Results. The mean glenohumeral abduction during the activity was 17°-22°. The mean distance between the neck and insert was approximately 1mm throughout the activity (Figure 3). The distance tended to become smaller with the arm externally rotated, but the change was not significant. Discussion. The reported incidence of scapular notching after Grammont type reverse shoulder arthroplasty is generally higher than the
For amputated patients, direct attachment of upper leg prosthesis to the skeletal system by a percutaneous implant is an alternative solution to the traditional socket fixation. Currently available implants, the OPRA system (Integrum AB, Göteborg, Sweden) and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck, Germany) [1-2] allow overcoming common soft tissue problems of conventional socket fixation and provide better control of the prosthetic limb [3], higher mobility and comfort [2, 4]. However, restraining issues such as soft-tissue infections, peri-prosthetic bone fractures [3, 5–8] and considerable bone loss around the stem [9], which might lead to implant's loosening, are present. Finally, a long a residual limb is required for implant fitting. In order to overcome the limiting biomechanical issues of the current designs, a new concept of the direct intramedullary fixation was developed. The aim was to restore the natural load transfer in the femur and allow implantations in short femur remnants (Figure 1). We hypothesize that the
Suture anchors are widely used to secure tendons and ligaments to bone during both arthroscopic and open surgery. However, single stage insertion suture anchors, i.e. anchors that could be inserted without predrilling of the bone, are not currently available. We aimed to record the impact needed for insertion of the
Implant designs for hip and knee arthroplasty have undergone a continual improvement process, but development of implants for total elbow arthroplasty (TEA) have lagged behind despite the marked mechanical burden placed on these implants. TEA is not as durable with failure rates approaching thirty percent at five years. The Coonrad-Morrey (Zimmer, Warsaw, IN), a linked design, remains the standard-bearer, employing polyethylene bushings through which a metal axle passes. A common failure mode is bushing wear and deformation, causing decreased joint function as the bushing-axle constraint decreases and osteolysis secondary to release of large volumes of wear debris. Improving upon this poor performance requires determining which factors most influence failure, so that failure can be avoided through design improvements. The approach integrates clinical observations of failed TEAs with implant retrieval analysis, followed by measurements of loads across the elbow for use in stress analyses to assess the performance of previous designs, and, finally,
Introduction and Objective. The surgical strategy for acetabular component revision is determined by available host bone stock. Acetabular bone deficiencies vary from cavitary or segmental defects to complete discontinuity. For segmental acetabular defects with more than 50% of the graft supporting the cup it is recommended the application of reinforcement ring or ilioischial antiprotrusio devices. Acetabular reconstruction with the use of the antiprotrusion cage (APC) and allografts represents a reliable procedure to manage severe periprosthetic deficiencies with highly successful long-term outcomes in revision arthroplasty. Objective. We present our experience, results, critical issues and technical innovations aimed at improving survival rates of antiprotrusio cages. Materials and Methods. From 2004 to 2019 we performed 69 revisions of the acetabulum using defrosted morcellized bone graft and the Burch Schneider anti-protrusion cage. The approach was direct lateral in 25 cases, direct anterior in 44. Patients were re-evaluated with standard radiography and clinical examination. Results. Eight patients died from causes not related to surgery, and two patients were not available for follow up. Five patients were reviewed for, respectively, non-osseointegration of the ring, post-traumatic loosening with rupture of the screws preceded by the appearance of supero-medial radiolucency, post-traumatic rupture of the distal flange, post-traumatic rupture of the cemented polyethylene-ceramic insert, and dislocation treated with new dual-mobility insert. Among these cases, the first three did not show macroscopic signs of osseointegration of the ring, and the only areas of stability were represented by the bone-cement contact at the holes in the ring. Although radiographic studies have shown fast remodeling of the bone graft and the implant survival range from 70% to 100% in the 10-year follow up, the actual osseointegration of the ring has yet to be clarified. To improve osseointegration of the currently available APC whose metal surface in contact with the bone is sandblasted, we combined the main features of the APC design long validated by surgical experience with the 3D-Metal Technology for high porosity of the external surface already applied to and validated with the press fit cups. The