Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 65 - 65
1 Nov 2021
Awadallah M Ong J Kumar N Rajata P Parker M
Full Access

Introduction and Objective. Dislocation of a hip hemiarthroplasty is a significant complication with a high mortality rate in elderly patients. Previous studies have shown a higher risk of dislocation in patients with neuromuscular conditions. In this study, we reviewed our larger cohort of patients to identify if there is a link between neuromuscular disorders and dislocation of hip hemiarthroplasty in patients with neuromuscular conditions. Materials and Methods. We have retrospectively analysed a single-centre data that was collected over 34 years for patients with intracapsular neck of femur fracture who underwent hip hemiarthroplasty. The study population was composed of four groups: patients with no neuromuscular disorders, patients with Parkinson's disease, patients with previous stroke, and patients with mental impairment. Results. A total of 3827 patients were included in the analysis. 3371 patients had no neuromuscular condition (Group I) with a dislocation rate of 1.1%. 219 patients had Parkinsonism (Group II) with a dislocation rate of 3.2%, 104 patients had a previous stroke with weakness on the fracture side with a dislocation rate of 1.0% (Group III), and 984 patients had severe mental impairment with a dislocation rate of 1.8% (Group IV). The increased dislocation rate for those with Parkinson's disease was statistically significant (p=0.02) while none of the other neuromuscular conditions were statistically significant. Conclusions. Our study has shown an increased risk of dislocation of hemiarthroplasty in patients with Parkinson's disease in comparison to other groups. No increase was apparent for patients with mental impairment or weakness from a previous stroke


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 32 - 32
1 Dec 2022
Ricci A Boriani L Giannone S Aiello V Marvasi G Toccaceli L Rame P Moscato G D'Andrea A De Benedetto S Frugiuele J Vommaro F Gasbarrini A
Full Access

Scoliosis correction surgery is one of the longest and most complex procedures of all orthopedic surgery. The complication rate is therefore not negligible and is particularly high when the surgery is performed in patients with neuromuscular or connective tissue disease or complex genetic syndromes. In fact, these patients have various comorbidities and organ deficits (respiratory capacity, swallowing / nutrition, heart function, etc.), which can compromise the outcome of the surgery. In these cases, an accurate assessment and preparation for surgery is essential, also making use of external consultants. To make this phase simpler, more effective and homogeneous, a multidisciplinary path of peri-operative optimization is being developed in our Institute, which also includes the possibility of post-operative hospitalization for rehabilitation and recovery. The goal is to improve the basic functional status as much as possible, in order to ensure faster functional recovery and minimize the incidence of peri-operative complications, to be assessed by clinical audit. The path model and the preliminary results on the first patients managed according to the new modality are presented here. The multidisciplinary path involves the execution of the following assessments / interventions: • Pediatric visit with particular attention to the state of the upper airways and the evaluation of chronic or frequent inflammatory states • Cardiological Consultation with Echocardiogram. • Respiratory Function Tests, Blood Gas Analysis and Pneumological Consultation to evaluate indications for preoperative respiratory physiotherapy cycles, Non-Invasive Ventilation (NIV) cycles, Cough Machine. Possible Polysomnography. • Nutrition consultancy to assess the need for nutritional preparation in order to improve muscle trophism. • Consultation of the speech therapist in cases of dysphagia for liquids and / or solids. • Electroencephalogram and Neurological Consultation in epileptic patients. • Physiological consultation in patients already being treated with a cough machine and / or NIV. • Availability of postoperative hospitalization in the rehabilitation center (with skills in respiratory and neurological rehabilitation) for the most complex cases. When all the appropriate assessments have been completed, the anesthetist in charge at our Institute examines the clinical documentation and establishes whether the path can be considered complete and whether the patient is ready for surgery. At the end of the surgery, the patient is admitted to the Post-operative Intensive Care Unit of the Institute. If necessary, a new program of postoperative rehabilitation (respiratory, neuromotor, etc.) is programmed in a specialist reference center. To date, two patients have been referred to the preoperative optimization path: one with Ullrich Congenital Muscular Dystrophy, and one with 6q25 Microdeletion Syndrome. In the first case, the surgery was performed successfully, and the patient was discharged at home. In the second case, after completing the optimization process, the surgery was postponed due to the finding of urethral malformation with the impossibility of bladder catheterization, which made it necessary to proceed with urological surgery first. The preliminary case series presented here is still very limited and does not allow evaluations on the impact of the program on the clinical practice and the complication rate. However, these first experiences made it possible to demonstrate the feasibility of this complex multidisciplinary path in which a network of specialists takes part


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 71 - 71
1 Mar 2013
Lancashire H Al Ajam Y Pendegrass C Blunn G
Full Access

Introduction. Bone-anchored devices have been used as skin-crossing conduits to record neuromuscular signals in sedated animals. Long-term recordings from cognisant subjects must be assessed. Hypothesis A bone-anchored device is suitable as a conduit for epimysial EMG (Electromyogram) recordings and is reliable in the long-term. Methods. The bone-anchored device was implanted into the medial aspect of an ovine tibia (n=1), and the epimysial electrode was sutured onto the peroneus tertius muscle. Epimysial and Surface EMG signals were recorded for 12 weeks. Results. The signal-to-noise ratio (SNR) was greater for epimysial (5.1) than surface electrodes (1.6). SNR deteriorated near the end of 12 weeks, due to debris in an external connector. Discussion and Conclusion. Implanted electrodes improve SNR, selectivity, signal reliability and reduce cross-talk. Bone-anchored devices allow hard-wired connections without infection or fatigue at the skin-interface. Hard-wired connections will enable more advanced prosthetic control. This is the first known use of a bone-anchored device to acquire physiological signals from a cognisant subject


Bone & Joint Research
Vol. 2, Issue 9 | Pages 179 - 185
1 Sep 2013
Warwick DJ Shaikh A Gadola S Stokes M Worsley P Bain D Tucker AT Gadola SD

Objectives. We aimed to examine the characteristics of deep venous flow in the leg in a cast and the effects of a wearable neuromuscular stimulator (geko; FirstKind Ltd) and also to explore the participants’ tolerance of the stimulator. Methods. This is an open-label physiological study on ten healthy volunteers. Duplex ultrasonography of the superficial femoral vein measured normal flow and cross-sectional area in the standing and supine positions (with the lower limb initially horizontal and then elevated). Flow measurements were repeated during activation of the geko stimulator placed over the peroneal nerve. The process was repeated after the application of a below-knee cast. Participants evaluated discomfort using a questionnaire (verbal rating score) and a scoring index (visual analogue scale). Results. The geko device was effective in significantly increasing venous blood flow in the lower limb both with a plaster cast (mean difference 11.5 cm/sec. -1. ; p = 0.001 to 0.13) and without a plaster cast (mean difference 7.7 cm/sec. -1. ; p = 0.001 to 0.75). Posture also had a significant effect on peak venous blood flow when the cast was on and the geko inactive (p = 0.003 to 0.69), although these differences were less pronounced than the effect of the geko (mean difference 3.1 cm/sec. -1. (-6.5 to 10)). The geko device was well tolerated, with participants generally reporting only mild discomfort using the device. Conclusion. The geko device increases venous blood flow in the lower limb, offering a potential mechanical thromboprolylaxis for patients in a cast. Cite this article: Bone Joint Res 2013;2:179–85


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 117 - 117
4 Apr 2023
Du L Yang B Zhong Z Wu K
Full Access

The principal of “function priority, early rehabilitation, and return to sports” is now the goal for sports injury rehabilitation. Neuromuscular electrical stimulation for anterior cruciate ligament (ACL) reconstruction is a rising procedure for early rehabilitation. This paper systematically assessed the effects of neuromuscular electrical stimulation on postoperative ACL reconstruction to provide guidance for physiotherapist and patient when designing a suitable rehabilitation protocol.

To evaluate the interventional outcomes of neuromuscular electrical stimulation following ACL reconstruction, we searched PubMed, EMbase, the Cochrane Library, Web of Science and CNKI to collect all randomized controlled trials (RCTs) comparing the effects with neuromuscular electrical stimulation and without intervention on rehabilitation after ACL reconstruction up to January 30, 2022. Two investigators independently performed literature screening, data extraction, bias assessment of risk, and used RevMan 5.3 software to conduct a meta-analysis.

A total of six RCTs were included, and the results showed that the use of neuromuscular electrical stimulation after anterior cruciate ligament reconstruction significantly improved the International Knee Documentation Committee (IKDC) scores (MD 6.33, 95% CI [-0.43, 12.22]; I2 = 66%; p = 0.040), the Lysholm score (MD 7.94, 95% CI [6.49, 9.39]; I2 = 89%; p < 0.001), and the range of motion (ROM) (MD 9.99, 95% CI [7.97, 12.02]; I2 = 81%; p < 0.001) in the knees when compared to the control group without using neuromuscular electrical stimulation.

Existing evidence show that neuromuscular electrical stimulation is beneficial for early rehabilitation after ACL reconstruction. The use of neuromuscular electrical stimulation is encouraged in the design of rehabilitation protocol. However, due to the limited number of RCT studies and the small sample size, further multi-center RCTs with more participants are needed for a higher-level evidence.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 79 - 79
1 Nov 2018
Marani L Pardo-Figuerez M Capel AJ Nilsson Z Stolzing A Lewis MP
Full Access

Human in vitro models of the neuromuscular junction (NMJ) are currently moving from embryonic stem cells to induced Pluripotent Stem Cells (iPSCs). With this, a robust model could be optimised for physiology and pathophysiology studies, as well as representing a drug screening platform. For this reason, the work presented here represents the optimisation of a human co-culture model of skeletal muscle (hSkM)/ iPSC-derived motor neurons (MNs) both in monolayer and in 3D tissue engineering collagen constructs. Firstly, human iPSC-derived motor neurons (MNs) were characterised over a period of 35 days to test their cholinergic potential. Then, primary human skeletal muscle (hSkM) and MNs were co-cultured on different substrates (gelatin and SureBond+ReadySet (Axol Bioscience)) and differentiated in various combinations of media to allow both myotube formation and neurite extension. Morphological (β-III Tubulin and Rhodamine Phalloidin) and interaction (α-Bungarotoxin and Synaptic Vesicle 2) immunofluorescent stainings were used to evaluate cell differentiation and co-localisation of pre and post-synaptic markers. Results from this study showed that the MNs presented a cholinergic phenotype up to 21 days; hSkM and MNs co-existed in culture and differentiated in neuronal Maintenance Medium (MM, Axol Bioscience); the 3D constructs allowed alignment and maturation of the muscle tissue, while providing a matrix for neurite extension and NMJ formation. This model has the potential to become a valid tool for in vitro drug screening while reducing the use of animals in research and providing the scientific community with a platform for personalised medicine


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 69 - 69
1 Nov 2018
Quinlan L
Full Access

Total knee arthroplasty (TKA) is becoming more prevalent as the average age of the general population increases and is generally considered to be a very effective and successful surgery. However, functional recovery post-surgery can often be less than optimal. Neuromuscular electrical stimulation (NMES) is a beneficial therapy proven to improve haemodynamics and muscle strength and may be of great benefit in improving functional recovery in the acute phase post-TKA. The objective of the study was to assess functional recovery in the period immediately following TKA and hospital discharge in response to a home-based NMES programme. Twenty-six TKA patients were randomized into a NMES stimulation or placebo-controlled group. All participants were given a research muscle stimulator to use at home post-discharge for 90 minutes per day over a period of 5 weeks. In the stimulation group, application of stimulation resulted in an electrically activated contraction of the soleus muscle. Patients in the placebo-controlled group received sensory stimulation only. Outcome measures were physical activity levels, joint range of motion and lower limb swelling, which were measured pre-surgery and on a weekly basis post-discharge up until the sixth post-surgical week. 90 minutes per day NMES stimulation significantly increased the Activity Time (P = 0.029 week 1 post-discharge) and the number of Stepping Bouts (P < 0.05 weeks 1 to 4 post-discharge) in the early post-discharge phase. While there was a trend towards a greater knee flexion with use of NMES, this did not reach statistical significance (P = 0.722). No effect of NMES was observed on swelling (P > 0.05 for all measures). Compliance to the NMES therapy was measured by an on-board SIM card in the NMES device, with a 95% and 94% time compliance rate for the stimulation and placebo-controlled groups respectively. The results of this study suggest that NMES may be very useful in improving functional recovery through increasing physical activity levels in the early post-TKA discharge phase. The results of this study warrant further investigation into the use of an optimized NMES protocol whereby improvements in knee range of motion and swelling may also be observed.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 586 - 590
1 May 2000
Suliman IA Adem A El-Bakri N Elhassan AM Lindgren JU

Immobilisation causes denervation-like changes in the motor endplates, decreases the content of IGF-I, and increases the number of IGF-I receptors in the spinal cord. In the rat we investigated whether similar changes occur after a fracture of the midshaft of the femur which had been treated by intramedullary fixation with adequate or undersized pins.

A more pronounced reduction in muscle wet weight was seen after fixation by undersized pins as well as decreased ash density of the ipsilateral tibia which did not completely return to normal within the 12-week experimental period. The nicotinic cholinergic receptors in the motor endplates of tibialis anterior were increased (p < 0.01) and there was a significant increase (p < 0.02) in IGF-I receptors in the lumbar spinal cord ipsilateral to the fracture after treatment by undersized nails. These changes may be associated with the impaired proprioception, co-ordination and motor activity which are sometimes seen after fractures.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 7 - 7
1 Dec 2022
Bruschi A Donati DM Choong P Lucarelli E Wallace G
Full Access

The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. We defined it as neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. In this study, materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 12 - 12
2 Jan 2024
Fernández-Costa J Tejedera-Villafranca A Ugarte-Orozco M Cortés-Reséndiz A Ramón-Azcón J
Full Access

Duchenne muscular dystrophy (DMD) is a prevalent childhood neuromuscular disease characterized by progressive skeletal and cardiac muscle degeneration due to dystrophin protein deficiency. Despite ongoing drug development efforts, no cure exists, with limited success in preclinical studies. To expedite DMD drug development, we introduce an innovative organ-on-a-chip (OOC) platform. This microfluidic device sustains up to six 3D patient-derived skeletal muscle tissues, enabling real-time evaluation of anti-DMD treatments. Our in vitro model recreates myotube integrity loss, a hallmark of DMD, by encapsulating myogenic precursors in a fibrin-composite matrix using a PDMS casting mold. Continuous contractile regimes mimic sarcolemmal instability, monitored through tissue contractibility and Creatine Kinase (CK) levels—an established marker of muscle damage. We further enhance our platform with a nanoplasmonic CK biosensor, enabling rapid, label-free, and real-time sarcolemmal damage assessment. Combining these elements, our work demonstrates the potential of OOCs in accelerating drug development for DMD and similar neuromuscular disorders


Full Access

Barriers to successful return to previous level of activity following Anterior Cruciate Ligament Recon-struction (ACLR) are multifactorial and recent research suggests that athletic performance deficits persist after completion of the rehabilitation course in a large percentage of patients. Thirty soccer athletes (26.9 ± 5.7 years old, male) with ACL injury were surgically treated with all-inside technique and semitendi-nosus tendon autograft. At 2 years from surgery, they were called back for clinical examination, self-reported psychological scores, and biomechanical outcomes (balance, strength, agility and velocity, and symmetry). Nonparametric statistical tests have been adopted for group comparisons in terms of age, concomitant presence of meniscus tear, injury on dominant leg, presence of knee laxity, presence of varus/valgus, body sides, and return to different levels of sports. Athletes with lower psychological scores showed lesser values in terms of power, resistance and neuromuscular activity as compared to the ones with good psychological scores that showed, instead, better self-reported outcomes (TLKS, CRSQ) and low fear of reinjury (TSK). In the athletes who had a functional deficit in at least one subtest, a safe return to sports could not have been recommended. Our findings confirmed that demographics, physical function, and psychological factors were related to playing the preinjury level sport at mean 2 years after surgery, sup-porting the notion that returning to sport after surgery is multifactorial. A strict qualitative and quantitative assessment of athletes’ status should be performed at different follow-ups after surgery to guarantee a safe and controlled RTP


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 90 - 90
1 Nov 2021
Kowalski E Catelli D Lamontagne M Dervin G
Full Access

Introduction and Objective. Gait variability is the amplitude of the fluctuations in the time series with respect to the mean of kinematic (e.g., joint angles) or kinetic (e.g., joint moments) measurements. Although gait variability increases with normal ageing or pathological mechanisms, such as knee osteoarthritis (OA). The purpose was to determine if a patient who underwent a total knee arthroplasty (TKA) can reduce gait variability. Materials and Methods. Twenty-five patients awaiting TKA were randomly assigned to receive either medial pivot (MP, m=7/f=6, age=62.4±6.2 years) or posterior stabilized (PS, m=7/f=5, age=63.7±8.9 years) implants, and were compared to 13 controls (CTRL, m=7/f=6, age=63.9±4.3 years). All patients completed a gait analysis within one month prior and 12 months following surgery, CTRLs completed the protocol once. A waveform F-Test Method (WFM) was used to compare the variance in knee biomechanics variables at each interval of the gait cycle. Results. Preoperatively, the PS group had greater sagittal knee angle variability compared to the MP (32–58% gait cycle) and CTRL (21–53% gait cycle) groups. Postoperatively, no difference in sagittal knee angle variability existed between any of the groups. Preoperatively, sagittal knee moment variability was greater in the MP (2–39% gait cycle) and PS (5–19% and 42–57% gait cycle) groups compared to the CTRL. Postoperatively, sagittal knee moment was lower in the MP (49–55% gait cycle) and greater in the PS (23–36% gait cycle) compared to the CTRL. Knee power variability was greater preoperatively in the MP (52–61% gait cycle) and PS (52–62% gait cycle) compared to the CTRL. Postoperatively, knee power variability was lower in the MP (17–22% and 45–50% gait cycle) and PS (6–23%, 34–41% and 45–49% gait cycle) compared to the CTRL group. Conclusions. Preoperatively, knee OA patients have greater variability in knee moments than CTRLs during the transition from double-limb support to single-limb support on the affected limb. This indicates knee instability as patients are adopting a gait strategy that refers to knee muscle contraction avoidance. The MP group showed greater knee stability postoperatively as they had lower knee moment and power variability compared to the CTRL. The significance of having less variability than CTRLs is not well understood at this time. Future research on muscle activity is needed to determine if neuromuscular adaptations are causing these reductions in variability after TKA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 100 - 100
1 Mar 2021
Walton T Hughes K Maripuri S Crompton T
Full Access

Abstract. Objectives. The purpose of this study was to determine the cost of inpatient admissions for developmental dysplasia of the hip (DDH) at a UK tertiary referral centre, and identify any association between newborn screening (NIPE) status and the cost of treatment. Methods. This was a retrospective study, using hospital episodes data from a single NHS trust. All inpatient episodes between 01/01/2014 to 30/06/2019 with an ICD-10 code stem of Q65 ‘congenital deformities of hip’ were screened to identify admissions for management of DDH. Data was subsequently obtained from electronic and paper records. Newborn screening status was recorded, and patients were divided into ‘NIPE-positive’ (diagnosed through selective screening) and ‘NIPE-negative’ (not diagnosed through screening). Children with neuromuscular conditions or concomitant musculoskeletal disease were excluded. The tariff paid for each inpatient episode was identified, and the number of individual clinic attendances, surgical procedures and radiological examinations performed (USS, XR, CT, MRI) were recorded. Results. 41 patients with DDH were admitted for inpatient management. 44% (n = 18) were NIPE-positive, diagnosed mean age 6.7 weeks. 56% (n = 23) were NIPE-negative, diagnosed mean age 26 months. The total cost of inpatient care in the NIPE-positive group was £171,471 (£9,526.18 per-patient) compared to £306,615 (£13,331.10 per-patient) for NIPE-negative. In the NIPE-positive group, there were 99 clinic attendances, 47 inpatient admissions and 160 radiological examinations performed (36 USS, 107 XR, 17 CT). This compared to 148 clinic attendances, 59 inpatient admissions and 215 radiological examinations (187 XR, 26 CT, 2 MRI) in the NIPE-negative group. Conclusion. A greater proportion of inpatient admissions for DDH are among NIPE-negative children. They incur a higher cost of treatment per patient and necessitate more inpatient resources. This study adds to the ongoing conversation around the cost-effectiveness of selective screening for DDH in the UK. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint 360
Vol. 10, Issue 5 | Pages 12 - 13
1 Oct 2021


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 1 - 1
1 Mar 2013
Nowlan NC Sharp J
Full Access

Developmental dysplasia of the hip (DDH) is the most common post-natal skeletal abnormality. It is widely acknowledged that conditions which cause or result in reduced movement in utero are contributing factors to the incidence of DDH. However, the hypothesis that prenatal movement plays a role in normal development of the hip joint has not been tested using embryonic model systems. This research investigates the effects of immobilization in chick embryos on hip joint morphogenesis. Embryonic chicks were treated in ovo using a neuromuscular blocking agent from embryonic days 5 to 9. Limbs were stained for cartilage using alcian blue, and were scanned in 3-D. Standardized virtual sections of the femur were taken and a number of virtual sections from age-matched limbs were overlaid in order to compare between control and immobilized limbs. The results show that not all immobilised limbs were equally affected, with some immobilised embryos having almost normal joint shapes, and other immobilised embryos displaying decreased protuberance of the femoral head and decreased indentation at the femoral neck. Our results demonstrate that the mechanobiological response to immobilisation can vary between individuals, but also that preventing movement during embryonic development can lead to abnormal morphogenesis of the developing proximal femur in some individuals, providing evidence that reduced movement during development can lead to features of DDH


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 166 - 166
1 Jul 2014
Flaxman T Smith A Benoit D
Full Access

Summary Statement. Using a weight-bearing force control task, age-related changes in muscle action were observed in osteoarthritic subjects, however, greater activation of rectus femoris and medial hamstring muscles in the OA group compared to control indicates greater cocontraction and varied stabilisation strategies. Introduction. Osteoarthritis (OA) is the most debilitating condition among older adults. OA is thought to be mechanically driven by altering the stabilising integrity of the joint. The main contributor to knee joint stability is that of muscular contraction. In cases where the history of a traumatic knee joint injury is not a causal factor, a change in muscle function, resulting in reduced strength and force control in believed to induce OA development and progression. Since age is also a determining factor of OA, the purpose of this study was to investigate the muscle activation patterns of young healthy adults (YC), older healthy adults (OC), and adults with OA during a standing isometric force control task. Patients & Methods. A force matching protocol was used to evaluate muscle activation patterns of 41 YC (23.1±1.9 years of age) 18 OC (59.7±5.14 years), and 19 OA (63.5±8.1 years). Subjects stood with their leg of interest fixed to a force platform and modulated ground reaction forces while exposing equal body weight to each leg. Surface electromyography (EMG) of 8 muscles that cross the knee joint, kinetics and kinematics were recorded while subjects generated 30% of their maximal force in 12 different directions, corresponding to various combinations of medial-lateral-anterior-posterior ground reaction forces. Processed EMG was normalised to previously recorded maximum voluntary isometric contraction (MVIC) and ensemble averaged into group means for each loading direction. Muscle activation patterns were displayed in EMG polar plots and were quantified with symmetry analyses, mean activation levels (X. EMG. ), directions (Φ), and specificity indices (SI). Group differences were tested with independent T-tests at the p<0.05 level. Results. Muscle activation patterns were similar between groups (i.e. symmetry and Φ). However, X. EMG. of 7 muscles was significantly greater in both the OA and OC groups compared to YC. OA group also demonstrated significantly greater X. EMG. in the rectus femoris and tensor fascia lata as well as lower SI in semitendinosus hamstrings compared to OC. Discussion/Conclusion. Our results indicate that regardless of loading direction, both OC and OA groups have greater levels of muscle co-contraction than YC. This is suggested to be an adaptive response to age-related changes in muscle strength and force control. Since individuals with OA have reduced muscle strength and force control compared to age-matched controls, our results suggest that the OA group's greater, less specific activation of knee joint muscles relative to the OC is this “stiffening” response adapted by the OA group, however, to an extent that may expose the joint to detrimental loading conditions, contributing to the progression of OA. Further investigation regarding age-related neuromuscular changes and their influence on joint loading conditions and development of OA is warranted


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 164 - 164
1 Jul 2014
Tochigi Y Segal N
Full Access

Summary. Measurement of changes in the physiological cycle-to-cycle variability in gait kinematics using the ELLIS approach holds promise as a new tool for quantitative evaluation of gait adaptability. Introduction. Adaptability is arguably one of the most crucial factors of gait function. However, functional limitations in adaptability have not been well documented, presumably due to the inability to accurately measure this aspect. For this purpose, we developed a new method to quantify subtle changes in cycle-to-cycle physiological variability in gait kinematics; a technique designated as the entropy of leg-linkage inertial signals (ELLIS) analysis. A previous study (Tochigi et al., JOR 2012) found that the ELLIS outputs in an asymptomatic cohort) became lower with greater age, and that subjects with symptomatic knee osteoarthritis exhibited lower values compared to age-matched asymptomatic subjects. In addition, highly consistent speed-dependent increases in ELLIS outputs (in the asymptomatic subjects) were also documented. This speed-dependency is consistent with the fact that stable walking at a faster pace places higher demands on the neuromuscular control systems. Complex interactions across multiple controlling factors presumably increase perturbations to gait kinematics within the “normal” range (i.e., increase in physiological variability). To advance understanding of the degree of speed dependence, the present study aimed to test whether or not the ELLIS outputs would linearly increase with increase in walking speed. Methods. Six asymptomatic adult individuals (all males, age 24 – 47) were recruited and completed an institutionally approved consent process. No subjects had lower limb symptoms, histories of major lower limb pathology in the prior year, or systemic conditions that might affect gait (e.g., neurological or cardiovascular impairments). For leg kinematics measurement, each subject wore a portable wireless inertial monitor, which was strapped to the lateral aspect of the left or right calf, just above the ankle. Self-selected gait speed was determined during a timed corridor walk. Data during a treadmill walk were collected at 60%, 80%, 100%, 120% and 140% of the individuals’ self-selected pace, in a randomised order. The kinematic data collected were six channels of synchronised signals (sampling rate: 150Hz), including tri-axial rotational rate and tri-axial acceleration data. For each of these two 3-D kinematic datasets, entropy was measured individually using a non-linear measure designated as Sample Entropy (SampEn). These outputs were plotted for the relationship with relative speed change, and the correlation between entropy and relative speed change was tested using the Pearson's linear regression model. Results. The SampEn values of the rotational rate data exhibited high positive correlation with relative speed changes, as indicated by the correlation coefficients (r) > 0.95 in all subjects, while those for the acceleration data exhibited modest correlation (r: 0.66 to 0.99). Conclusion. These data support the hypothesised speed-dependent linear increase of ELLIS outputs. Assuming the sensitivity of this speed-dependent change is associated with the integrity of gait adaptability, this approach may be capable of quantifying decrease of gait adaptability in various pathological conditions. This gait analysis technique does not require elaborate laboratory equipment, permitting data collection at a variety of non-specialised settings, such as private clinics and community-based settings. The ELLIS approach holds promise as a new convenient diagnostic tool


Bone & Joint 360
Vol. 3, Issue 2 | Pages 28 - 29
1 Apr 2014
El-Hawary R


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 259 - 263
1 Feb 2009
Dimmen S Nordsletten L Engebretsen L Steen H Madsen JE

Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel.

In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing.

Significantly lower maximum pull-out strength (p < 0.001), energy absorption (p < 0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 971 - 976
1 Jul 2007
Kampa RJ Prasthofer A Lawrence-Watt DJ Pattison RM

In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two.

Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.