header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DEVELOPMENT OF A HUMAN IN VITRO MODEL OF THE NEUROMUSCULAR JUNCTION, USING INDUCED PLURIPOTENT STEM CELL-DERIVED MOTOR NEURONS AND 3D TISSUE ENGINEERING CONSTRUCTS

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

Human in vitro models of the neuromuscular junction (NMJ) are currently moving from embryonic stem cells to induced Pluripotent Stem Cells (iPSCs). With this, a robust model could be optimised for physiology and pathophysiology studies, as well as representing a drug screening platform. For this reason, the work presented here represents the optimisation of a human co-culture model of skeletal muscle (hSkM)/ iPSC-derived motor neurons (MNs) both in monolayer and in 3D tissue engineering collagen constructs. Firstly, human iPSC-derived motor neurons (MNs) were characterised over a period of 35 days to test their cholinergic potential. Then, primary human skeletal muscle (hSkM) and MNs were co-cultured on different substrates (gelatin and SureBond+ReadySet (Axol Bioscience)) and differentiated in various combinations of media to allow both myotube formation and neurite extension. Morphological (β-III Tubulin and Rhodamine Phalloidin) and interaction (α-Bungarotoxin and Synaptic Vesicle 2) immunofluorescent stainings were used to evaluate cell differentiation and co-localisation of pre and post-synaptic markers. Results from this study showed that the MNs presented a cholinergic phenotype up to 21 days; hSkM and MNs co-existed in culture and differentiated in neuronal Maintenance Medium (MM, Axol Bioscience); the 3D constructs allowed alignment and maturation of the muscle tissue, while providing a matrix for neurite extension and NMJ formation. This model has the potential to become a valid tool for in vitro drug screening while reducing the use of animals in research and providing the scientific community with a platform for personalised medicine.


Email: