Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 85 - 85
23 Jun 2023
de Mello F Kadirkamanathan V Wilkinson JM
Full Access

Successful estimation of postoperative PROMs prior to a joint replacement surgery is important in deciding the best treatment option for a patient. However, estimation of the outcome is associated with substantial noise around individual prediction. Here, we test whether a classifier neural network can be used to simultaneously estimate postoperative PROMs and uncertainty better than current methods. We perform Oxford hip score (OHS) estimation using data collected by the NJR from 249,634 hip replacement surgeries performed from 2009 to 2018. The root mean square error (RMSE) of the various methods are compared to the standard deviation of outcome change distribution to measure the proportion of the total outcome variability that the model can capture. The area under the curve (AUC) for the probability of the change score being above a certain threshold was also plotted. The proposed classifier NN had a better or equivalent RMSE than all other currently used models. The threshold AUC shows similar results for all methods close to a change score of 20 but demonstrates better accuracy of the classifier neural network close to 0 change and greater than 30 change, showing that the full probability distribution performed by the classifier neural network resulted in a significant improvement in estimating the upper and lower quantiles of the change score probability distribution. Consequently, probabilistic estimation as performed by the classifier NN is the most adequate approach to this problem, since the final score has an important component of uncertainty. This study shows the importance of uncertainty estimation to accompany postoperative PROMs prediction and presents a clinically-meaningful method for personalised outcome that includes such uncertainty estimation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 5 - 5
1 Apr 2022
de Mello F Kadirkamanathan V Wilkinson M
Full Access

Successful estimation of postoperative PROMs prior to a joint replacement surgery is important in deciding the best treatment option for a patient. However, estimation of the outcome is associated with substantial noise around individual prediction. Here, we test whether a classifier neural network can be used to simultaneously estimate postoperative PROMs and uncertainty better than current methods. We perform Oxford hip score (OHS) estimation using data collected by the NJR from 249,634 hip replacement surgeries performed from 2009 to 2018. The root mean square error (RMSE) of the various methods are compared to the standard deviation of outcome change distribution to measure the proportion of the total outcome variability that the model can capture. The area under the curve (AUC) for the probability of the change score being above a certain threshold was also plotted. The proposed classifier NN had a better or equivalent RMSE than all other currently used models. The standard deviation for the change score for the entire population was 9.93, which can be interpreted as the RMSE that would be achieved for a model that gives the same estimation for all patients regardless of the covariates. However, most of the variation in the postoperative OHS/OKS change score is not captured by the models, confirming the importance of accurate uncertainty estimation. The threshold AUC shows similar results for all methods close to a change score of 20 but demonstrates better accuracy of the classifier neural network close to 0 change and greater than 30 change, showing that the full probability distribution performed by the classifier neural network resulted in a significant improvement in estimating the upper and lower quantiles of the change score probability distribution. Consequently, probabilistic estimation as performed by the classifier NN is the most adequate approach to this problem, since the final score has an important component of uncertainty. This study shows the importance of uncertainty estimation to accompany postoperative PROMs prediction and presents a clinically-meaningful method for personalised outcome that includes such uncertainty estimation


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 29 - 29
1 Apr 2022
Pettit MH Hickman S Malviya A Khanduja V
Full Access

Identification of patients at risk of not achieving minimally clinically important differences (MCID) in patient reported outcome measures (PROMs) is important to ensure principled and informed pre-operative decision making. Machine learning techniques may enable the generation of a predictive model for attainment of MCID in hip arthroscopy. Aims: 1) to determine whether machine learning techniques could predict which patients will achieve MCID in the iHOT-12 PROM 6 months after arthroscopic management of femoroacetabular impingement (FAI), 2) to determine which factors contribute to their predictive power. Data from the UK Non-Arthroplasty Hip Registry database was utilised. We identified 1917 patients who had undergone hip arthroscopy for FAI with both baseline and 6 month follow up iHOT-12 and baseline EQ-5D scores. We trained three established machine learning algorithms on our dataset to predict an outcome of iHOT-12 MCID improvement at 6 months given baseline characteristics including demographic factors, disease characteristics and PROMs. Performance was assessed using area under the receiver operating characteristic (AUROC) statistics with 5-fold cross validation. The three machine learning algorithms showed quite different performance. The linear logistic regression model achieved AUROC = 0.59, the deep neural network achieved AUROC = 0.82, while a random forest model had the best predictive performance with AUROC 0.87. Of demographic factors, we found that BMI and age were key predictors for this model. We also found that removing all features except baseline responses to the iHOT-12 questionnaire had little effect on performance for the random forest model (AUROC = 0.85). Disease characteristics had little effect on model performance. Machine learning models are able to predict with good accuracy 6-month post-operative MCID attainment in patients undergoing arthroscopic management for FAI. Baseline scores from the iHOT-12 questionnaire are sufficient to predict with good accuracy whether a patient is likely to reach MCID in post-operative PROMs


Background. Dislocation is a common complication following total hip arthroplasty (THA), and accounts for a high percentage of subsequent revisions. The purpose of this study was to develop a convolutional neural network (CNN) model to identify patients at high risk for dislocation based on postoperative anteroposterior (AP) pelvis radiographs. Methods. We retrospectively evaluated radiographs for a cohort of 13,970 primary THAs with 374 dislocations over 5 years of follow-up. Overall, 1,490 radiographs from dislocated and 91,094 from non-dislocated THAs were included in the analysis. A CNN object detection model (YOLO-V3) was trained to crop the images by centering on the femoral head. A ResNet18 classifier was trained to predict subsequent hip dislocation from the cropped imaging. The ResNet18 classifier was initialized with ImageNet weights and trained using FastAI (V1.0) running on PyTorch. The training was run for 15 epochs using ten-fold cross validation, data oversampling and augmentation. Results. The hip dislocation prediction classifier achieved the following mean performance: accuracy= 49.5(±4.1)%, sensitivity= 89.0(±2.2)%, specificity= 48.8(±4.2)%, positive predictive value= 3.3(±0.3)%, negative predictive value= 99.5(±0.1)%, and area under the receiver operating characteristic curve= 76.7(±3.6)%. Saliency maps demonstrated that the model placed the greatest emphasis on the femoral head and acetabular component. Conclusions. Existing prediction methods fail to identify patients at high risk of dislocation following THA. Our prediction model has high sensitivity and negative predictive value. Therefore, it can be helpful in rapid assessment of risk for dislocation following THA. The model further suggests radiographic locations which may be important in understanding the etiology of prosthesis dislocation


Bone & Joint Open
Vol. 4, Issue 3 | Pages 168 - 181
14 Mar 2023
Dijkstra H Oosterhoff JHF van de Kuit A IJpma FFA Schwab JH Poolman RW Sprague S Bzovsky S Bhandari M Swiontkowski M Schemitsch EH Doornberg JN Hendrickx LAM

Aims

To develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials.

Methods

This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.4% (153/2,388), respectively. The mean age was 75.9 years (SD 10.8) and 65.9% of patients (1,574/2,388) were female. The algorithms included patient and injury characteristics. Six algorithms were developed, internally validated and evaluated across discrimination (c-statistic; discriminative ability between those with risk of mortality and those without), calibration (observed outcome compared to the predicted probability), and the Brier score (composite of discrimination and calibration).


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 331 - 340
1 Mar 2022
Strahl A Kazim MA Kattwinkel N Hauskeller W Moritz S Arlt S Niemeier A

Aims

The aim of this study was to determine whether total hip arthroplasty (THA) for chronic hip pain due to unilateral primary osteoarthritis (OA) has a beneficial effect on cognitive performance.

Methods

A prospective cohort study was conducted with 101 patients with end-stage hip OA scheduled for THA (mean age 67.4 years (SD 9.5), 51.5% female (n = 52)). Patients were assessed at baseline as well as after three and months. Primary outcome was cognitive performance measured by d2 Test of Attention at six months, Trail Making Test (TMT), FAS-test, Rivermead Behavioural Memory Test (RBMT; story recall subtest), and Rey-Osterrieth Complex Figure Test (ROCF). The improvement of cognitive performance was analyzed using repeated measures analysis of variance.