The use of a
This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy.Aims
Methods
Introduction. The use of computer navigation has a potential to allow precise tumour resection and accurate reconstruction of the resultant defect. This can be useful in difficult areas such as pelvis, diaphyseal (intercalary) resections and geometric bony resections. Methods. We have carried out resections of musculoskeletal tumours in 7 patients using an existing commercial computer
The aim of this study was to investigate the local recurrence rate at an extended follow-up in patients following navigated resection of primary pelvic and sacral tumours. This prospective cohort study comprised 23 consecutive patients (nine female, 14 male) who underwent resection of a primary pelvic or sacral tumour, using computer navigation, between 2010 and 2012. The mean age of the patients at the time of presentation was 51 years (10 to 77). The rates of local recurrence and mortality were calculated using the Kaplan–Meier method.Aims
Patients and Methods
To assess the accuracy of patient-specific instruments (PSIs) CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s Objectives
Methods
We report our experience of using a computer
navigation system to aid resection of malignant musculoskeletal tumours
of the pelvis and limbs and, where appropriate, their subsequent
reconstruction. We also highlight circumstances in which navigation
should be used with caution. We resected a musculoskeletal tumour from 18 patients (15 male,
three female, mean age of 30 years (13 to 75) using commercially
available computer navigation software (Orthomap 3D) and assessed
its impact on the accuracy of our surgery. Of nine pelvic tumours,
three had a biological reconstruction with extracorporeal irradiation,
four underwent endoprosthetic replacement (EPR) and two required
no bony reconstruction. There were eight tumours of the bones of
the limbs. Four diaphyseal tumours underwent biological reconstruction.
Two patients with a sarcoma of the proximal femur and two with a
sarcoma of the proximal humerus underwent extra-articular resection
and, where appropriate, EPR. One soft-tissue sarcoma of the adductor
compartment which involved the femur was resected and reconstructed
using an EPR. Computer navigation was used to aid reconstruction
in eight patients. Histological examination of the resected specimens revealed tumour-free
margins in all patients. Post-operative radiographs and CT showed
that the resection and reconstruction had been carried out as planned
in all patients where navigation was used. In two patients, computer
navigation had to be abandoned and the operation was completed under
CT and radiological control. The use of computer navigation in musculoskeletal oncology allows
accurate identification of the local anatomy and can define the
extent of the tumour and proposed resection margins. Furthermore,
it helps in reconstruction of limb length, rotation and overall
alignment after resection of an appendicular tumour. Cite this article:
Due to the complex anatomy of the pelvis, limb-sparing resections
of pelvic tumours achieving adequate surgical margins, can often
be difficult. The advent of computer navigation has improved the
precision of resection of these lesions, though there is little
evidence comparing resection with or without the assistance of navigation. Our aim was to evaluate the efficacy of navigation-assisted surgery
for the resection of pelvic bone tumours involving the posterior
ilium and sacrum. Using our prospectively updated institutional database, we conducted
a retrospective case control study of 21 patients who underwent
resection of the posterior ilium and sacrum, for the treatment of
a primary sarcoma of bone, between 1987 and 2015. The resection
was performed with the assistance of navigation in nine patients
and without navigation in 12. We assessed the accuracy of navigation-assisted
surgery, as defined by the surgical margin and how this affects
the rate of local recurrence, the disease-free survival and the
effects on peri-and post-operative morbidity. Aims
Patients and Methods
We evaluated the oncological and functional outcome
of 18 patients, whose malignant bone tumours were excised with the
assistance of navigation, and who were followed up for more than
three years. There were 11 men and seven women, with a mean age
of 31.8 years (10 to 57). There were ten operations on the pelvic
ring and eight joint-preserving limb salvage procedures. The resection
margins were free of tumour in all specimens. The tumours, which
were stage IIB in all patients, included osteosarcoma, high-grade
chondrosarcoma, Ewing’s sarcoma, malignant fibrous histiocytoma
of bone, and adamantinoma. The overall three-year survival rate
of the 18 patients was 88.9% (95% confidence interval (CI) 75.4
to 100). The three-year survival rate of the patients with pelvic malignancy
was 80.0% (95% CI 55.3 to 100), and of the patients with metaphyseal
malignancy was 100%. The event-free survival was 66.7% (95% CI 44.9
to 88.5). Local recurrence occurred in two patients, both of whom
had a pelvic malignancy. The mean Musculoskeletal Tumor Society
functional score was 26.9 points at a mean follow-up of 48.2 months
(22 to 79). We suggest that navigation can be helpful during surgery for
musculoskeletal tumours; it can maximise the accuracy of resection
and minimise the unnecessary sacrifice of normal tissue by providing
precise intra-operative three-dimensional radiological information.
We hypothesised that the use of computer navigation-assisted
surgery for pelvic and sacral tumours would reduce the risk of an
intralesional margin. We reviewed 31 patients (18 men and 13 women)
with a mean age of 52.9 years (13.5 to 77.2) in whom computer navigation-assisted
surgery had been carried out for a bone tumour of the pelvis or
sacrum. There were 23 primary malignant bone tumours, four metastatic
tumours and four locally advanced primary tumours of the rectum.
The registration error when using computer navigation was <
1 mm
in each case. There were no complications related to the navigation,
which allowed the preservation of sacral nerve roots (n = 13), resection
of otherwise inoperable disease (n = 4) and the avoidance of hindquarter
amputation (n = 3). The intralesional resection rate for primary
tumours of the pelvis and sacrum was 8.7% (n = 2): clear bone resection
margins were achieved in all cases. At a mean follow-up of 13.1
months (3 to 34) three patients (13%) had developed a local recurrence.
The mean time alive from diagnosis was 16.8 months (4 to 48). Computer navigation-assisted surgery is safe and has reduced
our intralesional resection rate for primary tumours of the pelvis
and sacrum. We recommend this technique as being worthy of further
consideration for this group of patients. Cite this article: