Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Oncology

EVOLVING ROLE OF COMPUTER ASSISTED SURGERY IN MUSCULOSKELETAL ONCOLOGY

British Orthopaedic Oncology Society (BOOS) - 2011 Annual Scientific Meeting



Abstract

Introduction

The use of computer navigation has a potential to allow precise tumour resection and accurate reconstruction of the resultant defect. This can be useful in difficult areas such as pelvis, diaphyseal (intercalary) resections and geometric bony resections.

Methods

We have carried out resections of musculoskeletal tumours in 7 patients using an existing commercial computer navigation system (Orthomap 3D). CT & MRI scans of each patient were fused preoperatively using navigation software and the tumour margins were marked. The planes of tumour resection were defined on the 3D image generated. During surgery, trackers were attached to bone with tumour and registration performed. Instruments attached to navigation tracker were then used to identify the predetermined resection points. Of the 4 pelvic tumours, 1 had biological reconstruction with extra corporeal irradiation, 3 had endoprosthetic replacement & 1 did not need any bony reconstruction. 1 patient with proximal femur tumour needing extraarticular resection had endoprosthetic replacement. The 2 tibial diaphyseal tumours had biological reconstruction.

Results

Examination of the resected specimens revealed tumour free margins. Postoperative radiographs showed resection and reconstruction as planned in all cases. In the patient with extraarticular proximal femur resection the hip joint was inadvertently exposed whilst making the acetabular osteotomy & in one patient with pelvic tumour the intra-operative registration could not be accurately performed as she was overweight and a real time matching of anatomy & virtual images was not achieved.

Discussion and Conclusion

The use of computer navigation in musculoskeletal oncology allows integration of local anatomy and tumour extent and thus resection margins can be identified accurately. Our experience so far has been encouraging. Further clinical trials (multicentre) are required to evaluate its long term impact including functional & oncological outcomes.