Introduction. The use of technology, such as
Introduction. There is debate regarding whether the use of computer-assisted technology, such as
Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving
Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving
Recently, axial radiography has received attention for the assessment of distal femur rotational alignment, and satisfactory results have been as compared with the CT method. The purpose of this study was to assess rotational alignment of the femoral component in knee flexion by axial radiography and to compare flexion stabilities achieved by
Restoring native hip biomechanics is crucial to the success of THA. This is reflected both in terms of complications after surgery such as instability, leg length inequality, pain and limp; and in terms of patient satisfaction. The challenge that remains is that of achieving optimal implant sizing and positioning so as to restore, as closely as possible, the native hip biomechanics specific to the hip joint being replaced. This would optimise function and reduce complications, particularly, instability. (Mirza et al., 2010). Ideally, this skill should also be reproducible irrespective of the surgeon's experience, volume of surgery and learning curve. The general consensus is that the most substantial limiting factor in a THA is the surgeon's performance and as a result, human errors and unintended complications are not completely avoidable (Tarwala and Dorr, 2011). The more challenging aspects include acetabular component version, sizing and femoral component sizing, offset and position in the femoral canal. This variability has led to interest in technologies for planning THA, and technologies that help in the execution of the procedure. Advances in surgical technology have led to the development of computer
This technique is a novel superior based muscle sparing approach. Acetabular reaming in all hip approaches requires femoral retraction. This technique is performed through a hole in the lateral femoral cortex without the need to retract the femur. A 5 mm hole is drilled in the lateral femur using a jig attached to the broach handle, similar to a femoral nail. Specialised instruments have been developed, including a broach with a hole going through it at the angle of the neck of the prosthesis, to allow the rotation of the reaming rod whilst protecting the femur. A special C-arm is used to push on the reaming basket. The angle of the acetabulum is directly related to the position of the broach inside the femoral canal and the position of the leg. A specialised instrument allows changing of offset and length without dislocating the hip during trialling. Some instrumentation has been used in surgery but ongoing cadaver work is being performed for proof of concept. The ability to ream through the femur has been proven during surgery. The potential risk to the bone has been assessed using finite analysis as minimal. The stress levels for any diameter maintained within a safety factor >4 compared to the ultimate tensile strength of cortical bone. The described technique allows for transfemoral acetabular reaming without retraction of the femur. It is minimally invasive and simple, requiring minimal assistance. We are incorporating use with a universal robot system as well as developing an electromagnetic navigation system. Assessment of the accuracy of these significantly cheaper systems is ongoing but promising. This approach is as minimally invasive as is possible, safe, requires minimal assistance and has a number of other potential advantages with addition of other new
Precision planning with correct sizing and placement of components is critical to proper execution of total hip arthroplasty. While the desire to achieve excellent outcomes has always been a surgeon's goal, value-based care programs such as the Comprehensive Joint Replacement (CJR) program apportion real expenditures for the cost of treating complications such as fracture or dislocation to the participants. Such accountability accentuates the importance of optimizing the planning and execution of joint replacement surgery. Acetabular component sizing and placement in particular remains the single greatest challenge to surgeons. This is simply due to the fact that the requisite spatial information is not available to the surgeon during conventional surgery. Basing component placement on local anatomical landmarks without knowing the patient-specific nature of those landmarks ensures poor component placement in many cases. As a result, studies demonstrate that at least ½ of all acetabular components placed using conventional methods are malpositioned. Potential solutions include the using of intra-operative radiographic analysis, traditional
To introduce a new robot-assisted surgical system for spinal posterior fixation which called TiRobot, based on intraoperative three-dimensional images. TiRobot has three components: the planning and navigation system, optical tracking system and robotic arm system. By combining
Introduction. While component malposition remains a major short and long term problem associated with total hip arthroplasty, enhanced technologies such as
Acetabular component malalignment remains the single greatest root cause for revision THA with malposition of at least half of all acetabular components placed using conventional methods. These studies repeatedly document that the concept of using local anatomical landmarks has no scientific basis over a breadth of presenting pathology. Traditional
We live in an era where younger, fitter, more active patients are presenting with the symptoms and signs of degenerative joint disease and require total knee and total hip arthroplasty at a young age. At the same time, this population of patients is living longer and longer and is likely to create new and more complex failure modes for their implants. The ideal solution is a biological one, whereby we can either prevent joint degradation or catch it in its early stages and avoid further deterioration. There may also be advances along the way in terms of partial arthroplasty and focal resurfacing that will help us prevent the need for total joint arthroplasty. There are several tensions that need to be considered. Should we resurface / replace early, particularly now that we have access to
Acetabular component malalignment remains the single greatest root cause for revision THA with malposition of at least ½ of all acetabular components placed using conventional methods. The use of local anatomical landmarks has repeatedly proven to be unreliable due to individual variation of these structures. As a result, the use of such landmarks without knowledge of their three-dimensional orientation may actually be a major cause of component malpositioning. Traditional
Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly malpositioned1. The current study uses postoperative CT to assess the accuracy of a smart mechanical navigation instrument system for cup alignment. Patients and Methods. Twenty nine hip replacements performed using the HipXpert Navigation System had post-operative CT studies available for analysis. These post-operative CT studies were performed for pre-operative planning of the contralateral side, one to three years following the prior surgery. The patients included 17 men and 11 women. An application specific software module was developed to measure cup orientation using CT (HXR Application 1.3 Surgical Planning Associates Inc., Boston, Massachusetts). The method involves creation of a 3D surface model from the CT data and then determination of an Anterior Pelvic Plane coordinate system. A multiplaner image viewer module is then used to create an image through the CT dataset that is coincident with the opening plane of the acetabular component. Points on this plane are input and then the orientation of the cup is calculated relative to the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. The actual cup orientation was then compared to the goal of cup orientation recorded when the surgery was performed using the HipXpert navigation system for acetabular component alignment. Results. Mean operative anteversion error was 1.7 degrees (SD 3.4, range −6.5 to 8.5). Mean operative inclination error was −2.3 degrees (SD 3.1, range −8.9 to 3.9). There were no outliers in either anteversion or inclination. Conclusion. The current study demonstrates that the mechanical navigation system produces accurate cup alignment results as measured by post-operative CT and confirms the prior accuracy study performed using 2D/3D matching. This accuracy, compared to traditional
Acetabular component malalignment remains the single greatest root cause for revision THA with malposition of at least ½ of all acetabular components placed using conventional methods. The use of local anatomical landmarks has repeatedly proven to be unreliable due to individual variation of these structures. As a result, the use of such landmarks without knowledge of their three-dimensional orientation may actually be a major cause of component malpositioning. Traditional
Since its inception, knee arthroplasty has struggled to balance the requirements of relieving pain and restoring function in a durable way. Although highly successful in improving symptoms as measured by traditional outcome measures and achieving longevity, numerous studies have shown the problems that exist, even with well-implanted components of modern design. Some patients complain of ongoing functional limitation, discomfort, and pain. There are still many challenges in knee arthroplasty. We have a young population that is increasingly active that requires these procedures and yet they are living to a ripe old age and remaining ambulant into their 80s and 90s. We have focussed for the last decade on improving function and satisfaction in knee arthroplasty but we should not forget the fact that the highest failure rate is seen in our young patients and that we really do need a durable solution that will last several decades. There are several tensions that need to be considered. Should we resurface the knee early, particularly now that we have access to
INTRODUCTION. Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer
Introduction. Knee osteoarthritis is a leading cause of disability around the world. Traditionally, total knee arthroplasty (TKA) is the gold standard treatment; however, unicompartmental knee arthroplasty (UKA) has emerged as a less-invasive alternative to TKA. Patients with UKAs participate earlier with physical therapy (PT), have decreased complications, and faster discharges (1, 2). As UKA has evolved, so has computer
Introduction. Recent advances in 3D printing enable the use of custom patient-specific instruments to place drill guides and cutting slots for knee replacement surgery. However, such techniques limit the ability to intra-operatively adjust an implant plan based on soft-tissue tension and/or joint pathology observed in the operating room, e.g. cruciate ligament integrity. It is hypothesized that given the opportunity, a skilled surgeon will make intra-operative adjustments based on intra-operative information not captured by the hard tissue anatomy reconstructed from a pre-operative CT scan or standing x-ray. For example, tibiofemoral implant gaps measured intra-operatively are an indication of soft-tissue tension in the patient's knee, and may influence a surgeon to adjust implant position, orientation or size. This study investigates the frequency and magnitude of intra-operative adjustments from a single orthopedic surgeon during 38 unicondylar knee arthroplasty (UKA) cases. Methods. For each patient, a pre-operative plan was created based on the bony anatomy reconstructed from the pre-operative CT. This plan is analogous to a plan created with patient-specific cutting blocks or customized implants. With robotic technology that utilizes pre-operative imaging, intra-operative
Background:. While more than ½ of acetabular components placed during hip arthroplasty are significantly malpositioned, traditional surgical navigation and robotoics have not been widely adopted. This may be due to the additional time, expense, and complexity associated with this technology. As an alternative, smart mechanical navigation instruments, adjusted on a patient-specific basis, have been introduced to address the problem of cup malorientation. The current study assesses the accuracy of acetabular component alignment using a mechanical navigation instrument. Patients and Methods:. The acetabular component was aligned in 58 consecutive hips in 58 patients using the HipSextant Mechanical Navigation System (Surgical Planning Associates, Inc. Boston, MA). The technique involves using a patient-specific plan and associated software. In planning for surgery, CT data are used to create a 3D model and to define the anterior pelvic plane (APP). A patient-specific HipSextant docking coordinate system is then determined by three points: one just behind the posterior acetabular rim, a second on the lateral side of the ASIS, and a third on the surface of the ilium (Figure 1). The HipSextant itself has two adjustable orthogonal protractors (in-plane and off-plane angle) and two adjustable arms so that the instrument is adjusted for each patient based on their specific anatomy. The instrument docks directly to the pelvis so the recommended orientation of the acetabular component is based on the actual position of the pelvis at the time of component implantation. A direction indicator points in the direction of the planned cup orientation (Figure 2). Cup alignment was further enhanced with the use of a parallel guide to improve parallel visualization (Figure 3). Postoperative cup orientation was measured using a validated two-dimensional/three-dimensional matching method [3,5]. Results:. Cup orientation measurements of the series of 58 THA's performed in the current study using the mechanical navigation instrument showed an error of inclination of 0.63° ± 2.3° [range, −5.3° to 6.0°] and an error of anteversion of 1.0° ± 2.7° [range, −5.3° to 7.0°]. There were no outliers in either anteversion or inclination. Conclusion:. The current study demonstrates that the mechanical navigation instrument shows excellent cup alignment accuracy in a consecutive series of patients. This accuracy, compared to traditional