Advertisement for orthosearch.org.uk
Results 1 - 20 of 210
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 4 - 4
1 Dec 2022
Bazzocchi A
Full Access

Imaging can provide valuable information about the function of tissues and organs. The capacity for detecting and measuring imaging biomarkers of biological activities, allows for a better understanding of the pathophysiology of any process in the human body, including the musculoskeletal system. This is of particular importance in oncologic, metabolic and rheumatologic diseases, but not limited to these. In the domain of the musculoskeletal system, functional imaging also means to be able to address biomechanical evaluations. Weight-bearing imaging and dynamic studies have a prominent role. All imaging techniques (X-rays, CT, MR, ultrasound) are in demand, and offer different applications, specific equipment and novel methods for addressing this. Functional imaging is also essential to drive minimally invasive treatments – i.e. interventional radiology, and new treatment approaches move together with the advances on imaging guidance methods. On both the diagnostic and the interventional side, the increasing availability of dedicated equipment and the development of specific imaging methods and protocols greatly helps the transition from research to clinical practice


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 128 - 128
2 Jan 2024
Kelly D
Full Access

Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of tissue engineering and biofabrication strategies for the regeneration of musculoskeletal tissues such as bone, ligament, tendon, meniscus and articular cartilage. This talk will demonstrate how different musculoskeletal tissues, specifically cartilage, bone and osteochondral defects, can be repaired using emerging biofabrication and 3D bioprinting strategies. This will include examples from our lab where cells and/or growth factors are bioprinted into constructs that can be implanted directly into the body, to approaches where biomimetic tissues are first engineered in vitro before in vivo implantation. The efficacy of these different biofabrication strategies in different preclinical studies will be reviewed, and lessons from the relative successes and failures of these approaches to tissue regeneration will be discussed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 71 - 71
2 Jan 2024
Ma S Dubin A Romero L Loud M Salazar A Chu S Klier N Masri S Zhang Y Wang Y Chesler A Wilkinson K Vásquez V Marshall K Patapoutian A
Full Access

Distal arthrogryposis (DA) is a collection of rare developmental disorders characterized by congenital joint contractures. Most arthrogryposis mutations are in muscle- and joint-related genes, and the anatomical defects originate cell-autonomously within the musculoskeletal tissues. However, gain-of-function (GOF) mutations in PIEZO2, a principal mechanosensor in somatosensation, cause DA subtype 5 via unknown mechanisms. We show that expression of a GOF PIEZO2 mutation in proprioceptive sensory neurons mainly innervating muscle spindles and tendons is sufficient to induce DA5-like phenotypes in mice. Overactive PIEZO2 causes anatomical defects via increased activity within the peripheral nervous system during postnatal development. Surprisingly, overactive PIEZO2 is likely to cause joint abnormalities via increased exocytosis from sensory neuron endings without involving motor circuitry. This reveals a role for somatosensory neurons: excessive mechanosensation within these neurons disrupts musculoskeletal development. We also present proof-of-concept that Botox injection or dietary treatment can counteract the effect of overactive PIEZO2 function to evade DA-like phenotypes in mice when applied during a developmental critical period. These approaches might have clinical applications. Beyond this, our findings call attention to the importance of considering sensory mechanotransduction when diagnosing and treating other musculoskeletal disorders. Acknowledgements: Our work is supported by National Institutes of Health grant (R35 NS105067, R01 DE022358, R25 SC3GM127195, R25 GM07138, R01GM133845, intramural) and Howard Hughes Medical Institute


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 54 - 54
2 Jan 2024
Mathavan N
Full Access

Aging impairs the regenerative capacity of musculoskeletal tissues and is associated with poor healing outcomes. PolgA. D257A/D257A. (PolgA) mice present a premature aging phenotype due to the accumulation of mitochondrial DNA (mtDNA) point mutations at rates 3 – 5 fold higher compared to wild type mice. Consequently, PolgA mice exhibit the premature onset of clinically-relevant musculoskeletal aging characteristics including frailty, osteo-sarcopenia, and kyphosis. I will present our recent findings on the use of PolgA mice to investigate the effects of aging on the regenerative capacity of bone. In particular, I will focus on the mechano-sensitivity of the regenerative process in aged bone environments and the opportunities it presents for clinical translation of mechanical intervention therapies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 1 - 1
4 Apr 2023
Buldu M Sacchetti F Yasen A Furtado S Parisi V Gerrand C
Full Access

Primary malignant bone and soft tissue tumours often occur in the lower extremities of active individuals including children, teenagers and young adults. Survivors routinely face long-term physical disability. Participation in sports is particularly important for active young people but the impact of sarcoma treatment is not widely recognised and clinicians may be unable to provide objective advice about returning to sports. We aimed to identify and summarise the current evidence for involvement in sports following treatment of lower limb primary malignant bone and soft tissue tumours. A comprehensive search strategy was used to identify relevant studies combining the main concepts of interest: (1) Bone/Soft Tissue Tumour, (2) Lower Limb, (3) Surgical Interventions and (4) Sports. Studies were selected according to eligibility criteria with the consensus of three authors. Customised data extraction and quality assessment tools were used. 22 studies were selected, published between 1985 – 2020, and comprising 1005 patients. Fifteen studies with data on return to sports including 705 participants of which 412 (58.4%) returned to some form of sport at a mean follow-up period of 7.6 years. Four studies directly compared limb sparing and amputation; none of these were able to identify a difference in sports participation or ability. Return to sports is important for patients treated for musculoskeletal tumours, however, there is insufficient published research to provide good information and support for patients. Future prospective studies are needed to collect better pre and post-treatment data at multiple time intervals and validated clinical and patient sports participation outcomes such as type of sports participation, level and frequency and a validated sports specific outcome score, such as UCLA assessment. In particular, more comparison between limb sparing and amputation would be welcome


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 51 - 51
14 Nov 2024
Shayestehpour H Shayestehpour MA Wong C Bencke J Rasmussen J
Full Access

Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition. Methods. In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237). Results. We investigated the difference between the muscle activation on the right and left sides including erector spinae (ES), psoas major (PS), and multifidus (MF). Results of the AIS simulations indicated that, on average throughout the gait cycle, the right ES, left PS and left MF had 46%, 44%, and 23% higher activities compared to the other side, respectively. In standing, the ratios were 28%, 40%, and 19%, respectively. However, for the control subject, the differences were under 7%, except ES throughout the gait, which was 17%. Conclusion. The musculoskeletal model revealed distinct differences in force patterns of the right and left sides of the spine, indicating an instability phenomenon, where larger curves lead to higher muscle activations for stabilization. Acknowledgement. The project is funded by the European Union's Horizon 2020 program through Marie Skłodowska-Curie grant No. [764644]


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 37 - 37
1 Mar 2021
Kaufmann J McGregor A Phillips A
Full Access

Abstract. Objectives. Osteoporosis of the pelvis and femur is diagnosed in a high proportion of lower-limb amputees which carries an increased fracture risk and subsequently serious implications on mobility, physical dependency and morbidity. Through the development of biofidelic musculoskeletal and finite element (FE) models, we aim to determine the effect of lower-limb amputation on long-term bone remodelling in the hip and to understand the potential underpinning mechanisms for bone degradation in the younger amputee population. Methods. Our models are patient specific and anatomically accurate. Geometries are derived from MRI-scans of one bilateral, above-knee, amputee and one body-matched control subject. Musculoskeletal modelling enables comparison of muscle and joint reaction-forces throughout gait. This provides the loading scenario implemented in FE. FE modelling demonstrates the effect of loading on the amputated limb via a prosthetic socket by comparing bone mechanical stimulation in amputee and control cases. Results. Musculoskeletal modelling shows that the bilateral amputee has 25% higher peak hip-reaction force than controls but a 54% lower peak knee-reaction force. Compensation for missing muscles and joints cause large-scale changes to the muscle loading patterns of the residual limb. FE analysis shows a 32% reduction in bone stimulation within the proximal femur and an 81% reduction in the distal femoral shaft when compared to the healthy control. A shielding effect from weight-bearing through a prosthetic socket was observed that may offset any increases in joint and muscle loading at the amputated hip. Conclusions. Bone loss in the young amputee population could be driven by unloading osteopenia where altered joint and muscle loads cause altered mechanical stimulus in the femur. Over many cycles of remodelling, a net bone loss occurs. Importantly, this suggests that the issue is preventable, or even reversible, with the implementation of targeted loading regimes or changes to the design of the prosthetic socket. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 108 - 108
14 Nov 2024
Marchiori G Zaffagnini S Cavazza L Fabbro GD Grassi A Lopomo NF Giavaresi G Maglio M
Full Access

Introduction. Histology is still considered the gold standard method for the evaluation of soft tissues in the musculoskeletal field, thanks to the possibility of studying structures using different staining and high magnification microscopy. To overcome the intrinsic limits of this method, contrast enhanced microtomographic (CE- microCT) protocols are constantly evolving to allow 3D study of soft tissues. However, no standardized approaches are available, and many concerns exist about the alterations induced to the samples. Method. microCT/histology protocols were explored on human tendons and menisci. To enhance contrast tissues for microCT scanning 1) examethyldisilazane drying 2) 2% phosphotungstic acid (PTA) in alcoholic solution exposition and 3) 2% PTA in aqueous solution exposition were performed; to observe PTA contrast progression, three exposition and scanning times were selected. microCT images were compared to histological slices obtained from the same samples, after rehydration protocols, or from adjacent tissues portion, stained with Picrosirius red to highlight the peculiar collagenic structures. Result. Exposition times influence PTA diffusion and tissue contrast; its specificity for collagenic structure allow a clearer contrast of the tissues. Histological processing on the same samples is possible: PTA removal requires careful washing in basic solution to reduce the hardening of the sample, while drying can be reverted applying inverse protocol. Comparison with microCT images is really accurate if histology is performed on the same sample, although all protocols induce tissue shrinkage with relative packing of collagen fibers. Conclusion. The contrast approaches tested proved effective in highlighting the structures of both tendons and menisci, but the structural effects induced by tissue shrinkage do not allow a completely real microCT visualization of native tissue. Histology can be the reference method to monitor the efficacy of the contrast methods and the alterations induced to define the possibility of improvement of the technique. Acknowledgement. PR23-PAS-P4 “ADJOINT 2”- INAIL


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 19 - 19
1 Dec 2022
Belvedere C Ruggeri M Berti L Ortolani M Durante S Miceli M Leardini A
Full Access

Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the variance of the model point cloud, this analysis automatically calculates longitudinal, vertical and mid-lateral axes. Using the defined references, absolute or relative orientations of the bones can be calculated in 3D. In 19 diabetic patients, 3D reconstructed bone models of the foot under load were combined with plantar pressure measurement. Significant correlations were found between bone orientations, heights above the ground, and pressure values, revealing anatomic areas potentially prone to ulceration. In 4 patients enrolled for total ankle arthroplasty, preoperative 3D reconstructions were used for prosthetic design customization, allowing prosthesis-bone mismatch to be minimized. 20 knees with femoral ligament reconstruction were acquired with WB-CBCT and standard CT (in unloading). Bone reconstructions were used to assess congruency angle and patellar tilt and TT-TG. The values obtained show differences between loading and unloading, questioning what has been observed so far. Twenty flat feet were scanned before and after Grice surgery. WB-CBCT allowed characterization of the deformity and bone realignment after surgery, demonstrating the complexity and multi-planarity of the pathology. These applications show how a more complete and realistic 3D geometric characterization of the of lower limb bones is now possible in loading using WB-CBCT. This allows for more accurate diagnoses, surgical planning, and postoperative evaluations, even by automatisms. Other applications are in progress


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 61 - 61
1 Nov 2018
Djalali-Cuevas A Skoufos I Tzora A Prassinos N Diakakis N Zeugolis DI
Full Access

RNA-Seq or whole transcriptome shotgun sequencing has been adopted in the last years as a reference technique to determine the presence and the quantity of different species of RNA in determined biological samples, thanks to it allows the identification every single RNA species transcribed from a reference genome. Meta-profiling takes advantage of the public availability of an increasing set of RNA-Seq data produced by different laboratories to summarize the expression levels of the different RNA species of many samples according to their biological context, giving the opportunity to perform comparisons on the gene expression profiles of different tissues by integrating data derived from a high number of studies. By using Genevestigator™; a platform which integrates RNA-Seq data into meta-profiles, we have performed a comparison between the gene expression profiles of bone, cartilage, muscle tendon and skin by means of interrogating its database with different gene sets and families with relevance to the function of the tissues of the musculoskeletal system. The collagen gene family and genes coding for proteoglycans, matrix metalloproteinases and tissue inhibitors of metalloproteinases, mechanotransduction-related proteins and signalling pathways involved in tissue development and differentiation have been analysed. Hierarchical clustering for every gene set was performed for the understanding the differences and similarities between the different tissues included in the analyses. The results of this study will help to improve our understanding of the musculoskeletal system, and will help to identify new biomarkers and signalling pathways of specific relevance for the bone, cartilage, muscle and tendon


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 16 - 16
1 Nov 2018
Rochev Y
Full Access

By definition, a smart biomaterial is a material, such as a ceramic, alloy, gel or polymer, that can convert energy from one form into another by responding to a change in a stimulus in its environment. These stimuli may involve temperature, pH, moisture, or electric and magnetic fields. In particular, thermoresponsive biomaterials have been successfully employed to host mammalian cells with a view to musculoskeletal tissue engineering. The presentation provides an overview of the use of thermosensitive polymers for the non-enzymatic stem cell harvesting, cell sheet engineering, three-dimensional scaffolds fabrications and organ-printing materials


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 8 - 8
1 Oct 2015
Mueller A Tew S Clegg P Canty-Laird E
Full Access

Introduction. The two-dimensional (2D) monolayer culture paradigm has limited translational potential to physiological systems; chondrocytes and tenocytes in monolayer lose expression of hallmarks of differentiated status (dedifferentiation). Qualitative assessment of three-dimensional (3D) cultures in musculoskeletal biology relative to native tissues has been limited. An understanding of prevailing gene regulatory networks is required to define whether 3D culture systems faithfully restitute the native tissue phenotype (redifferentiation). Using a systems biology approach to explore the gene networks associated with de- and re-differentiation may define targetable regulators associated with phenotypic plasticity of adult musculoskeletal cells. Materials and Methods. Global transcriptomic and proteomic profiling of matrix-depleted chondrocytes and tenocytes from the rat was performed for each of three conditions (native tissue, monolayer at passage three, or tissue-appropriate 3D cultures). Differential analysis of mRNA and protein abundance, gene ontology annotation, pathway topology impact analysis, and derivation of common mechanistic networks was undertaken to define consensus expression profiles, signalling pathways, and upstream regulators for de- and re-differentiation in each cell type. Results. Principal component analysis demonstrated a convergence of gene expression profiles in monolayer, including the expression of musculoskeletal progenitor markers scleraxis (Scx) and Mohawk (Mkx). Three-dimensional culture systems failed to demonstrate parity with native tissue and incited the expression of Il-6 and Ptgs2 (COX2). The CCN-family member Ctgf (CCN2), and the marker of skeletal differentiation Grem1 (gremlin 1), were consistently differentially abundant in de- and re-differentiation at both the mRNA and protein level. Pathway topology impact analysis defined PI-3K/Akt as the common signalling pathway in de- and re-differentiation. Discussion. Historically, the terms de- and re-differentiation have been used with no mechanistic definition. Additionally, there is no standardised phenotype for 3D cultures to benchmark novel progress in bioengineering. Consensus upstream regulators yielded a unified mechanistic network for chondrocyte and tenocyte phenotypes in three conditions. The PI-3K/Akt signalling pathway has been implicated in a range of physiological activities including dedifferentiation, proliferation, matrix synthesis, and cell survival. Pathway analysis suggests that the PI-3K/Akt signalling pathway may contribute to the de- and re-differentiation phenotypes for both chondrocytes and tenocytes and represents a rational target for further network-level analysis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 55 - 55
2 Jan 2024
Wehrle E
Full Access

Despite the major advances in osteosynthesis after trauma, there remains a small proportion of patients (<10%) who exhibit delayed healing and/or eventual progression to non-union. While known risk factors exist, e.g. advanced age or diabetes, the exact molecular mechanism underlying the impaired healing is largely unknown and identifying which specific patient will develop healing complications is still not possible in clinical practice. The talk will cover our novel multimodal approaches in small animals, which have the potential to precisely capture and understand biological changes during fracture healing on an individual basis. Via combining emerging omics technologies with our recently developed femur defect loading equipment in mice, we provide a platform to precisely link mechanical and molecular analyses during fracture healing.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 26 - 26
1 Aug 2013
Young PS Bell SW Mahendra A
Full Access

The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of computer assisted navigation in these cases could improve surgical precision and achieve pre-planned oncological margins with improved accuracy. We resected musculoskeletal tumours in ten patients using commercially available computer navigation software (Orthomap 3D, Stryker UK Ltd). Of the five pelvic tumours, two underwent biological reconstruction with extra corporeal irradiation, two endoprosthetic replacement (EPR) and one did not require bony reconstruction. Three tibial diaphyseal tumours had biological reconstruction. One patient with proximal femoral sarcoma underwent extra-articular resection and EPR. One soft tissue sarcoma of the adductor compartment involving the femur was resected with EPR. Histological examination of the resected specimens revealed tumour free margins in all cases. Post-operative radiographs and CT show resection and reconstruction as planned in all cases. Several learning points were identified related to juvenile bony anatomy and intra-operative registration. The use of computer navigation in musculoskeletal oncology allows integration of local anatomy and tumour extent to identify resection margins accurately. Furthermore, it can aid in reconstruction following tumour resection. Our experience thus far has been encouraging. Further clinical trials are required to evaluate its long-term impact on functional & oncological outcomes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 106 - 106
1 Jul 2014
Salerno M Avnet S Bonuccelli G Eramo A De Maria R Gambarotti M Gamberi G Baldini N
Full Access

Summary. Starting from human musculoskeletal sarcomas, we isolated a subset of cells that display cancer stem cell properties. The control of culture conditions is crucial to enhance the isolation of this cell population. Introduction. Cancer stem cells (CSCs) have emerged as the real responsible for the development, chemoresistance, and metastatic spread of different human cancers, including musculoskeletal sarcomas. However, unlike most leukemias and solid tumors, so far, data on musculoskeletal sarcomas refer to CSCs obtained from established cell lines, and only a few authors have reported on the isolation of CSCs from tissue samples [1-7]. Reasonably due to some peculiar features of mesenchymal tumors, including the lack of unique surface markers that identify tumor progenitors, there are still partial clues on the existence of a CSC population in these cancers. Here, we report the identification of putative CSCs in musculoskeletal sarcomas using the most general accepted isolation method, the sphere culture system. Accordingly to recent reports, we also analyzed the effects of reduced oxygen availability on the behavior of sarcoma CSCs. Patients & Methods. Between 2009 and 2012, we collected fresh tissue samples from 49 patients (25 males and 24 females, age 6–85 yr) with musculoskeletal sarcomas. Cells obtained from samples were cultured in anchorage-independent serum-starved conditions, in the presence of adequate growth factors, until the formation of floating spheres, here called ‘sarcospheres’. To obtain parental tumor cell cultures, single cells obtained from biopsies were in parallel seeded in anchorage-dependent conditions, in the presence of fetal bovine serum until the formation of cell monolayers. The obtained sarcospheres were characterised in terms of gene expression and in vivo tumorigenic potential. We then exposed sarcospheres obtained from a rhabdomyosarcoma model (RD cells) to a hypoxic environment (1% O. 2. ), and analyzed their growth and gene expression to that of sarcospheres grown at standard 21% O. 2. . Results. Using a sphere-forming assay, we established sphere cultures in 5 out of 49 cases (10.2 %). All sarcosphere cultures expressed consistent mRNA levels for OCT3/4, Nanog, and SOX2. CSCs from a chondrosarcoma and from a rhabdomyosarcoma also showed the ability to recapitulate the original tumor morphology in a mouse model. Finally, we observed that hypoxia induced a significant increase of the number and size of CSCs from RD. Discussion/Conclusion. Starting from human sarcoma biopsies and established cell lines, we were able to characterise the CSC subset of musculoskeletal sarcomas, that were isolated through the sphere system assay. These cells had stem-like properties, and showed in vivo tumorigenic ability. We also observed that exposure of CSCs to low oxygen conditions increased the number and size of spheres and the expression of stem cell-related markers, suggesting that the culture in hypoxic conditions could improve the yield of the isolation method here used, and that the oxygen availability is a crucial element in the physiological maintenance of CSCs of musculoskeletal sarcomas


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 10 - 10
1 Aug 2013
Cree C Jenkins P Huntley J
Full Access

There is substantial concern about the state of musculoskeletal knowledge of junior doctors. There are also marked differences in the locomotor curricula of medical schools, raising the possibility that students may be selectively disadvantaged from gaining appropriate knowledge and/or attaining a musculoskeletal career path. The aims of this study were to assess the musculoskeletal knowledge of newly qualified doctors in the south of Scotland, and to compare this between the two medical schools (Glasgow and Edinburgh) that have different locomotor teaching programmes. All final year medical students, from Glasgow and Edinburgh Universities (n=158 and 221, respectively), attending the compulsory ‘Preparation for Practice’ lecture course immediately after (Glasgow) or before (Edinburgh) final exams, were assessed by the Freedman and Bernstein musculoskeletal examination, previously validated with two different pass-standards: (i) 73.1% (by orthopaedic surgeons), and (ii) 70% (by physicians). There was a significant difference (Wilcoxon two sample test; p<0.5×10. −9. ) in the marks obtained at the two institutions, the median being 59% (IQR 50–67%) and 68% (IQR 60–76%) at Glasgow and Edinburgh respectively. The pass-rates for the two institutions (Glasgow vs. Edinburgh) were markedly different, being 17.1% vs. 32.6% for the higher pass-mark, and 21.5% vs. 48% for the lower. The majority of newly qualified doctors in the south of Scotland have inadequate musculoskeletal knowledge. There is a substantial and statistically significant difference in the scores attained by students from two neighbouring medical schools (Glasgow and Edinburgh). The striking difference in the pass-rates can be best explained by differences in respective musculoskeletal courses. These explicit and comparative deficits raise substantial questions for musculoskeletal curriculum planning, teaching, assessment and quality assurance


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 10 - 10
11 Apr 2023
Manon J
Full Access

Periosteal mesenchymal stem cells (PMSC) are an emerging niche of stem cells to enhance bone healing by tissue engineering process. They have to be differentiated into osteoprogenitors in order to synthesize new bone matrix. In vitro differentiation with specific differentiation medium (DM) is not exactly representative of what occurs in vivo. The interaction between PMSC and growth factors (GF) present in biological matrix is somewhat less understood. The goal of this study is to explore the possibility of spontaneous PMSC differentiation in contact with different biological matrices without DM.

500.000 porcine PMSC were seeded on 6-well plates and cultured with proliferation medium (PM). When reaching 80% confluence, biological samples (n=3) of demineralized bone matrix (DBM), decellularized porcine bone allograft (AOp), human bone allograft (AOh), human periosteum (HP) and human fascia lata (HFL) were added. Negative and positive control wells included cells with only PM or DM, respectively. The differentiation progress was assessed by Alizarin Red staining at days 7, 14 and 21. Bone morphogenetic protein content (BMP 2, 4, 5, 6, 7, 8, 9 and 11) of each sample was also investigated by western blot.

Alizarin red highlighted bone nodules neoformation on wells containing AOp, AOh and DBM, like positive controls. HP and HFL wells did not show any nodules. These results are correlated to a global higher BMP expression profile in AOp than in HP and HFL but not statistically significant (p=0.38 and p>.99, respectively). The highest expression in each tissue was that of BMP2 and BMP7, which play an important role in osteoinduction.

PMSC are well known to participate to bone formation but, despite BMP presence in HP and HFL, they did not permit to achieve osteogenesis alone. The bone contact seems to be essential to induce in vitro differentiation into osteoprogenitors.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 30 - 30
1 Jan 2013
Hartvigsen J Davidsen M Hestbaek L Søgaard K Roos E
Full Access

Background and purpose. Over the past decade, it has become apparent that more often than not musculoskeletal pain occurs in more than one site in an individual, and traditional approaches, where pain has been studied as a narrow site-specific problem, are often not feasible. The overall aim of this study is to describe clusters of pain using a large population-based sample. This presentation will focus specifically on musculoskeletal co-complaints in back pain sufferers. Methods and results. The Danish National Institute of Public Health has since 1987 conducted national representative health interview surveys of the adult Danish population some of which have included questions on musculoskeletal complaints. We used latent class analysis to identify latent classes of musculoskeletal complaints that occurred alongside a primary complaint of back pain. In addition, probabilities that specific sites occurred as co-complaints were determined. Three latent classes were identified and they exhibited quite different patterns of musculoskeletal co-complaints. The most commonly occurring class had a low probability of any co-complaints, the second most commonly occurring class had a high probability of pain in the neck, shoulders and mid-back, while the least commonly occurring class had very high probabilities of pain at all other body sites. Conclusions. Latent class analysis can be used to identify distinctly different groups of pain patterns in persons primarily complaining of back pain. The three groups identified likely have very different prognoses. Conflicts of Interest. None. Source of Funding. None. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 26 - 26
1 Nov 2018
Ribeiro S Novacek V Fernandes E Gomes M Reis R Bayon Y Zeugolis D
Full Access

To repair soft tissue, it is vital to ensure that the biomaterial is able to mimic the complex elasticity of the native tissue. It has been demonstrated that substrate stiffness has a huge influence on cellular growth, differentiation, motility and phenotype maintenance. The goal of the present study is to characterize extensively a set of polymeric films with variable mechanical profiles. A range of synthetic biodegradable polymers was selected according to the physico-chemical intrinsic properties of aliphatic polymers. They have similar chemistry (absorbable polyesters made from lactic acid, glycolic acid, trimethylene carbonate, dioxanone & β-caprolactone), however show different mechanical and degradation properties. The films were manufactured by thermal presser and then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the films were assessed by uniaxial tensile tests in wet conditions and also by atomic force microscopy (AFM) to assess the material's stiffness at a micro-level. In vitro assays were performed to assess the cell cytocompatibility, proliferation and differentiation potential of the films. The mechanical properties of the materials are within the range intended for musculoskeletal tissue repair. Biological assays showed good cell adhesion, cell proliferation and cell viability. Stem cells were able to differentiate into adipogenic, osteogenic, chondrogenic and tenogenic lineages. Overall the selection of polymers gave good options for a potential tissue repair scaffold. In the future, the combined effect of stiffness and topography will be assessed on cell phenotype maintenance