Objectives. The aim of this study was to systematically review the literature on measurement of
Aims. Rotational acetabular osteotomy (RAO) is an effective joint-preserving surgical treatment for acetabular dysplasia. The purpose of this study was to investigate changes in
Introduction. There is a lack of evidence-based treatments for patients with chronic pain after total knee arthroplasty (TKA). It is well-established that knee extensor and flexor
Background. Revision total knee arthroplasties (rTKA) are performed with increasing frequency due to the increasing numbers of primary arthroplasties, but very little is known regarding the influence of
Purpose. Investigating the effects of femoral stem length on hip and knee
There are many previous reports dealing with the relationship between the abductor moment arm or femoral offset (FO), and other factors such as the abductor
To compare strength and recruitment of periarticular knee muscles in subjects with severe osteoarthritis (OA) one week before and one year after a total knee replacement (TKR). Twenty-eight subjects, mean age = 64.5 years, with severe knee OA performed maximum voluntary isometric contractions for six exercises designed to test knee flexor and extensor and plantarflexor
Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific
Summary Statement. Bio-impedance analysis (BIA) provides a convenient method for the estimation of whole body and segmental measurement of skeletal muscle mass (SMM). BIA-measured SMM parameters may be effectively used for the normalisation of
Introduction. Intra-articular injury has been described as primary cause of pain in hip dysplasia. At this point it is unknown whether external muscle-tendon related pain coexists with intra-articular pathology. The primary aim was to identify muscle-tendon related pain in 100 dysplasia patients. The secondary aim was to test if muscle-tendon related pain is linearly associated to self-reported hip disability and
Introduction. Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA [2,3]. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific
Purpose. Stress fractures (SFs) are highly prevalent in female athletes, especially runners (1337%), and result in pain and lost training time. There are numerous risk factors for SFs in athletes; however, the role of bone quality in the etiology of SFs is currently unknown. Therefore, our primary objective was to examine whether there are characteristic differences in bone quality and bone strength in female athletes with lower limb SFs using high-resolution peripheral quantitative computed tomography (HR-pQCT). A secondary objective was to compare
Introduction: The purpose of this study was to quantify changes in lower limb
Modern musculoskeletal modeling techniques have been used to simulate shoulders with reverse total shoulder arthroplasty and study how geometric changes resulting from implant placement affect shoulder muscle moment arms. These studies do not, however, take into account how changes in muscle length will affect the force generating capacity of muscles in their post-operative state. The goal of this study was to develop and calibrate a patient-specific shoulder model for subjects with RTSA in order to predict muscle activation during dynamic activities. Patient-specific muscle parameters were estimated using a nested optimization scheme calibrating the model to isometric arm abduction data at 0°, 45° and 90°. The model was validated by comparing predicted muscle activation for dynamic abduction to experimental electromyography recordings. A twelve-degree of freedom model was used with experimental measurements to create a set of patient-specific data (three-dimensional kinematics, muscle activations, muscle moment arms, joint moments, muscle lengths, muscle velocities, tendon slack lengths, optimal fiber lengths and peak isometric forces) estimating muscle parameters corresponding to each patient's measured strength. The optimization varied muscle parameters to minimize the difference between measured and estimated joint moments and muscle activations for isometric abduction trials. This optimization yields a set of patient-specific muscle parameters corresponding to the subject's own
Introduction. Although Total elbow arthroplasty (TEA) generally provides favorable clinical outcomes, its complications have been reported with high rate compared with other joints. Previously, we used the Bryan & Morrey approach in TEA, which included separating the triceps muscle subperiosteally from the olecranon; however, since 2008, in order to prevent skin trouble and deficiency of the triceps, we performed TEA by MISTEA method, which required no removal of the subcutaneous tissue in the region of the olecranon and no release or stripping of the triceps tendon. Objectives. The purpose of this study was to examine the utility of the MISTEA method by evaluating and comparing
Aim: Patients treated with one-stage combined operations after walking age for developmental dysplasia of the hip (DDH), and whose follow-up revealed both clinical and radiological complete healing underwent flexor and extensor isokinetic
Total joint replacement (TJR) is by far the most effective therapy for end-stage OA patients. Most of patients achieve joint pain reduction and function improvement following to TJR, however up to 22% of them either do not improve or deteriorate after surgery. The aim of this study was to identify genetic variants to be associated with poor outcome of TJR in primary OA patients by a genome-wide association approach (GWAS). Study participants were primary OA patients from the Newfoundland Osteoarthritis Study (NFOAS) that comprised total knee or hip replacement and recruited before 2016 in St. John's, NL. DNA samples were extracted from patients' blood. Study participants completed their pre-operation and 3.99±1.38 years post-surgery outcome assessment using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). DNA samples were genotyped using the genome-wide Illumina HumanOmni2.58 genotyping microarray containing 2.4 million SNPs. Pre-association quality control filtering was conducted for the raw genotyping data using PLINK 1.7 program, and genotype imputation was performed using the IMPUTE2 algorithm with multiple population reference data from 1000 Genome Project. The imputed data with ∼3.1 million variants was used to test the association with non-responders to TJR using the additive genetic model. Eighty three primary OA patients (44 responders and 39 non-responders) were included in the analysis. Association analysis detected three chromosomal regions on chr5, 7, and 8 to be significantly associated with non-responding to pain. The top SNPs at these loci are intergenic variants that include SNP (rs17118094, p=4.4×10-5) on chr5. This SNP is adjacent to SGCD gene that plays an important role in muscular strength and maintenance. Another associated SNP (rs71572810, p=4.7×10-5) is nearby IMMP2L gene on chr7. This gene is reported to be associated with behavioral abnormalities. Finally, SNP (rs6992938, p=5.8×10-5) on chr8 is located downstream of TRPA1 gene that is known to have a central role in the pain response to endogenous inflammatory mediators. Three loci were also found to be significantly associated with non-responding to function. The lead variant in the locus on chr1 is an intergenic SNP (rs9729377, p=1.7×10-5) falling between CTBS and MCOLN2 genes. CTBS gene is associated with TNF-α, a cytokine that stimulate the inflammation acute phase reaction, and MCOLN2 gene plays a role in the chemokine secretion and macrophage migration in the innate immune response. Other top SNPs in loci on chr2 and 10 harbor CCDC93, INSIG2, and KLF6 genes that are associated with heel bone mineral density, hypercholesterolemia, obesity and BMI. To our knowledge, this project is the first study that investigated the association between genetic factors and TJR non-responders. Our results demonstrated that genes related to
Anterior cruciate ligament reconstruction has become a standard procedure with a documented good and excellent outcome of 70–90%. It has been demonstrated by previous research that all patients following surgery demonstrate a strength deficit of almost 20%. However it is not known whether these strength deficits have an influence on postoperative functionality. 52 consecutive patients (38 males and 14 females) were selected (mean age 27.9 years). All subjects were tested prior and 12 month following anterior cruciate ligament reconstruction.
Sarcopenia is an age-related geriatric syndrome which is associated with subsequent disability and morbidity. Currently there is no promising therapy approved for the treatment of sarcopenia. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK) are expressed in bone and skeletal muscle. Activation of the NF-κB pathway mainly inhibits myogenic differentiation, which leads to skeletal muscle dysfunction and loss. LYVE1 and CD206 positive macrophage has been reported to be associated with progressive impairment of skeletal muscle function with aging. The study aims to investigate the effects of an anti-RANKL treatment on sarcopenic skeletal muscle and explore the related mechanisms on muscle inflammation and the polarization status of macrophages. Sarcopenic senescence-accelerated mouse P8 (SAMP8) mice at month 8 were treated intraperitoneally with 5mg/kg anti-RANKL (IK22/5) or isotype control (2A3; Bio X Cell) antibody every 4 weeks and harvested at month 10. Senescence accelerated mouse resistant-1 (SAMR1) were collected at month 10 as the age-matched non-sarcopenic group. Ex-vivo functional assessment, grip strength and immunostaining of C/EBPa, CD206, F4/80, LYVE1 and PAX7 were performed. Data analysis was done with one-way ANOVA, and the significant level was set at p≤0.05. At month 10, tetanic force/specific tetanic force, twitch force/specific twitch force in anti-RANKL group were significantly higher than control group (all p<0.01). The mice in the anti-RANKL treatment group also showed significantly higher grip strength than Con group (p<0.001). The SAMP8 mice at month 10 expressed significantly more C/EBPa, CD206 and LYVE1 positive area than in SAMR1, while anti-RANKL treatment significantly decreased C/EBPa, CD206 and LYVE1 positive area. The anti-RANKL treatment protected against skeletal muscle dysfunctions through suppressing muscle inflammation and modulating M2 macrophages, which may represent a novel therapeutic approach for sarcopenia. Acknowledgment: Collaborative Research Fund (CRF, Ref: C4032-21GF)