Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BONE QUALITY AND MUSCLE STRENGTH IN LOWER-LIMB STRESS FRACTURES IN FEMALE ATHLETES

Canadian Orthopaedic Association (COA)



Abstract

Purpose

Stress fractures (SFs) are highly prevalent in female athletes, especially runners (1337%), and result in pain and lost training time. There are numerous risk factors for SFs in athletes; however, the role of bone quality in the etiology of SFs is currently unknown. Therefore, our primary objective was to examine whether there are characteristic differences in bone quality and bone strength in female athletes with lower limb SFs using high-resolution peripheral quantitative computed tomography (HR-pQCT). A secondary objective was to compare muscle strength between SF subjects and controls.

Method

Female athletes with (n=19) and without (n=19) lower limb SFs were recruited from the local community. All SFs were medically confirmed by a physician and subjects were assessed within 1–47 weeks (12.7 13.7) of diagnosis. Controls were age-, training volume- and sport-matched to SF athletes. Bone density and microarchitectural bone parameters such as cortical thickness and porosity, as well as trabecular thickness, separation and number of all subjects were assessed using HR-pQCT at two distal tibia scanning sites (distal, ultra-distal). Finite element (FE) analysis was employed to estimate bone strength and load sharing of cortical and trabecular bone from the HR-pQCT scans. Regional analysis was applied to the HR-pQCT scans to investigate site-specific bone differences between groups. Muscle torque was measured by a Biodex dynamometer as a surrogate of muscle strength. Independent sample t-tests and Mann-Whitney U-tests were used for statistical analyses (p < 0.05).

Results

Significant differences and trends indicated compromised trabecular bone and slightly thicker cortices with fewer pores in SF subjects compared with controls. This was most pronounced in the posterior region of the distal tibia, which is the site of highest tensile stresses during running and a common SF site. FE analysis indicated significantly higher cortical loads (median 4.2% higher; p=0.03) in the distal tibia site (but not ultra-distal site) of SF subjects compared to controls. The SF group exhibited significantly reduced knee extension strength (median 18.3% lower; p=0.03) and a trend towards reduced plantarflexion (median 17.3% lower; p=0.24) and eversion strength (median 9.6% lower; p=0.49) compared to controls.

Conclusion

This is the first study to compare bone microarchitectural quality and lower-limb muscle strength between female athletes with SFs and health controls. A reduced trabecular bone quality in SF subjects may result in an insufficient ability to absorb and distribute tibial loads. This, in turn, may lead to higher stresses in the cortex and a higher risk for SFs. Low muscle strength may increase SF risk by providing insufficient muscular support to counteract shear stresses associated with reaction forces during running. Further study is needed to determine whether a resistance-training program can improve bone quality and in turn, reduce SF risk.