There are many types and articulating surfaces in acetabular cups. Most of the designs currently available are modular, the liner snapping into a locking mechanism of some type. These modular inserts may be polyethylene, usually highly crosslinked polyethylene, or ceramic. Metal shells used in metal-on-metal devices are usually of a monoblock design. The elliptical monoblock design has been available for 20 years and was originally made of Titanium with a compression molded polyethylene liner. Tantalum (trabecular metal) was used as the shell material in the more recent designs and the polyethylene is actually molded directly into the tantalum framework. Monoblock acetabular components have a number of advantages. They do not allow access to the ilium because there are no holes in the socket shell with the monoblock construct. They require no locking mechanism which may increase metallic debris. No back surface liner wear can occur because all motion is eliminated at the liner/shell interface. However, because of this absence of screw holes there is an inability to visualise the floor of the acetabulum and perfect coaptation between the shell and the acetabular floor may not occur. The presence of dome gaps of greater than 1.5 mm have been noted in 5% of these components but these have not compromised implant stability and in a review of over 600 cups there has been no change in implant position. Results with over 258
There are many types and articulating surfaces in acetabular cups. Most of the designs currently available are modular, the liner snapping into a locking mechanism of some type. These modular inserts may be polyethylene, usually highly crosslinked polyethylene, or ceramic. Metal shells used in metal on metal devices are usually of a monoblock design. The elliptical monoblock design has been available for 20 years and was originally made of Titanium with a compression molded polyethylene liner. Tantalum (trabecular metal) was used as the shell material in the more recent designs and the polyethylene is actually molded directly into the tantalum framework. Monoblock acetabular components have a number of advantages. They do not allow access to the ilium because there are no holes in the socket shell with the monoblock construct. They require no locking mechanism which may increase metallic debris. No back surface liner wear can occur because all motion is eliminated at the liner/shell interface. However, because of this absence of screw holes there is an inability to visualise the floor of the acetabulum and perfect coaptation between the shell and the acetabular floor may not occur. The presence of dome gaps of greater than 1.5mm have been noted in 5% of these components but these have not compromised implant stability and in a review of over 600 cups there has been no change in implant position. The elliptical shape of the cup makes the mouth of the acetabular component 2mm greater than the dome so that an exceptionally strong acetabular rim fit results. Results with over 258
There are many types of articulating surfaces in uncemented acetabular cups. Most of the designs currently available are modular, with the shell snapping into a locking mechanism of some type. An Elliptical Monoblock design has been available for 15 years and was originally made of titanium with a factory assembled compression molded polyethylene liner. Porous tantalum (trabecular metal) was used as the shell material in a subsequent more recent design and in this design the polyethylene is actually molded directly into the tantalum framework. Monoblock acetabular components do not allow particulate access to the ilium via screw holes and require no surgeon assembled locking mechanism which may increase backside wear and metallic debris. There are no holes in the socket because of the monoblock construct. Because of this absence of screw holes there is an inability to visualise the floor of the acetabulum and perfect coaptation between the shell and the acetabular floor may not occur. The presence of dome gaps of greater than 1.5mm have been noted in 5% of these components but these have not compromised implant stability and in a review of over 600 cups there has been no change in implant position. The Elliptical shape of the cup makes the mouth of the acetabular component 2mm greater than the dome so that an exceptionally strong acetabular rim fit results. Results will be reported from two major institutional series with a minimum 10-year follow-up (range 10–15 years). No pelvic osteolysis was not seen in any patient in either series. In the HSS series of 250 cases with minimum 10 year follow up there were 4 revisions for instability but none for mechanical failure. There were three femoral revisions for loosening but the cup was intact and not revised in these patients. Utilising the Livermore measurement method polyethylene wear averages 0.8mm per year (0.6mm-1.3mm) and there have been no revisions for wear. Radiographic evaluation demonstrates stable bony interface in all patients. In a Mayo series of prospectively randomised patients also at minimum 10 years there was no lysis and only one case of aseptic loosening in a beaded titanium cup. At minimum 10-year follow up two similar elliptical monoblock cementless acetabular component designs with compression molded polyethylene have confirmed the theoretical advantages of this design concept and demonstrate long term results that have been excellent to date.
The use of cementless acetabular components is currently the gold standard for treatment in total hip arthroplasty (THA). Porous coated cups have a low modulus of elasticity that enhances press-fit and a surface that promotes osseointegration.
Introduction. The aim of this study is to report the results of Revision hip arthroplasty using large diameter, metal on metal bearing implants- minimum 2 year follow up. Methods. A single centre retrospective study was performed of 22 consecutive patients who underwent acetabular revision surgery using metal on metal bearing implants between 2004 and 2007. Birmingham hip resurfacing (BHR) cup was used in all patients - monoblock, uncemented, without additional screws in 16 cases and cemented within reinforcement or reconstruction ring in 6 cases. Femoral revisions were carried out as necessary. Results. There were 16 men and 6 women with a mean age of 71 years (51-83). Revision surgery was performed for aseptic loosening in 10, infected primary hip arthroplasty in 8, infected Hemiarthroplasty in 1 and Peri-prosthetic fracture with loosening in 3 patients. A 2-stage revision was performed for all infected hips. One patient died and the remaining 21 patients had clinical and radiological assessment at a mean 35 months (24-60). The mean Harris hip score was 75 (23-98) with 50% good to excellent results. Only 1 patient had further revision to a proximal femoral replacement and constrained cup in 2 stages for recurrent infection at 24 months. There were 2 recurrent infections (both revised for septic loosening) and 1 non-union of trochanteric osteotomy. There were no dislocations in the group. No radiological loosening of implants or metal ion complications have been seen at last follow up. Conclusions. We believe this is the first reported series on the use of large diameter metal on metal bearing surfaces for revision hip arthroplasty. Our series shows satisfactory short to medium term results in this complex group of patients with no component loosenings, despite
Modern prosthetic stem construction strives to achieve the attractive goals of stress shielding prevention and optimal osteointegration. PhysioLogic stem is a new generation composite isoelastic femoral stem consisting of titanium core sheathed in implantable PEEK polymer and coated with titanium layer. This construction combines the benefits of both stress shielding prevention, due to its elasticity under bending load corresponding closely to that of natural bone, and rapid osteointegration, due to the stem's titanium coating. The aim of this study is long-term clinical progress evaluation and retrospective analysis in patients undergoing primary PhysioLogic stem implantation at our institution. From 1998 to 2003, we performed 51 primary total hip arthroplasty (THA) operations with implantation of PhysioLogic Stem at our institution. Indications for THA included osteoarthritis (21), hip dysplasia (14), rheumatoid arthritis (10), and femoral neck nonunion (6). In all patients we used totally uncemented system — PhysioLogic Stem and
Pure tantalum has been proposed in orthopaedic surgery. Its chemical and physical properties have been widely studied in the past. From pure tantalum is obtained a spongy structure (Trabecular Metal Technology: TMT) that shows a full thickness porosity which is 2–3 times higher compared to other surfaces available for bone ingrowth with a three-dimensional porous arrangement in rough trabeculae. Pores (average diameter of 650 mm) are fully interconnected and represent 75–80% of the whole volume. TMT acetabular components have an elliptical shape and have an irregular external surface which both allow an optimal mechanical fit. We retrospectively reviewed 212 cases of monoblock porous tantalum acetabular cup (Hedrocel, Stratec) implanted between 1999 and 2003 in a single centre with a minimum follow-up of 9–10 years; There were 98 men and 114 women, with an average age of 65 years. They all underwent primary or revision total hip arthroplasty or to acetabular component revision alone. In all patients a monoblock porous tantalum acetabular component with polyethylene directly compression molded into cup, with or without peripheral holes for screws, was implanted. In all primary procedures the same femoral stem (Synergy, Smith and Nephew) was implanted. All patients were evaluated with a clinical examination (Harris Hip Score: HHS) and with standard radiographs of the pelvis preoperatively and 1, 3, 6 months and yearly postoperatively. The stability of the acetabular cup was determined by modified Engh's criteria. The HHS score improved from 42 preoperatively to 94 after one year; at 13 years follow-up it was 95. The subjective outcome was widely satisfying, with the majority of patients experimenting good functional recovery and return to daily activities. Osteointegration of the acetabular component was present in all X-rays controls at one year after surgery. All post-operative evidence of residual bone loss (geodes, bone defects in revisions and in displasia) were no more radiographically evident after 1 year postoperatively as the host bone quickly filled these gaps. We did not observe osteolysis nor progressive radiolucent lines at the latest follow-up. None of the cups was revised, except 3 cases, revised for infection. Both clinical and radiographic results are the same or even superior to those of coated implants. Our experience confirms that trabecular metal tantalum cups can avoid the formation of bone-implant interface membrane and consequently can avoid implant loosening. The most important advantages of TMT
The introduction of a new implant material is not without risk. A series of worst-case scenarios were developed and tested accordingly to answer questions such as: what will happen if the implant is not placed in a good orientation? What will happen to the material after a long implantation time, e.g. 20 or more years?. To reach a higher level of safety, a new approach for the preclinical testing has been taken. The vitamys® material (a novel vitamin-doped HXLPE) followed a severe pre-clinical testing protocol, including mechanical, tribological and biocompatibility testing. The testing includes a comparison of vitamys® vs. standard-UHMWPE and other HXLPE after accelerated ageing for periods equivalent to 20 and 40 years in-vivo. Hip simulator testing was done at inclination angles from 35° to 65° to assess the “forgiveness” of the material for mal-orientation. Comparing the test results to published data, it becomes evident that the vitamin addition and the sequence of the manufacturing steps both have a significant effect of the resulting mechanical, ageing and wear properties. In contrast to UHMWPE or HXLPE without antioxidant, the vitamys material behaves in a very “forgiving” manner: Hip simulator testing of vitamys at high inclination angles and even with severely aged material revealed no increase of wear rates. The vitamys material was first introduced in a
Introduction. Current standard cups of metal on metal resurfacing hip arthroplasty (RHA) have no dome holes and it is very difficult for surgeons to confirm full seating of these cups. This sometimes results in gap formation between the cup and acetabular floor. Although the incidence of initial gaps using modular press-fit cups with dome screw holes has been reported to range from 20 to 35%, few studies have reported the incidence of gap formation with