To examine whether Natural Language Processing (NLP) using a state-of-the-art clinically based Large Language Model (LLM) could predict patient selection for Total Hip Arthroplasty (THA), across a range of routinely available clinical text sources. Data pre-processing and analyses were conducted according to the Ai to Revolutionise the patient Care pathway in Hip and Knee arthroplasty (ARCHERY) project protocol (. https://www.researchprotocols.org/2022/5/e37092/. ). Three types of deidentified Scottish regional clinical free text data were assessed: Referral letters, radiology reports and clinic letters. NLP algorithms were based on the GatorTron model, a Bidirectional Encoder Representations from Transformers (BERT) based LLM trained on 82 billion words of de-identified clinical text. Three specific inference tasks were performed: assessment of the base GatorTron model, assessment after model-fine tuning, and external validation. There were 3911, 1621 and 1503 patient text documents included from the sources of referral letters, radiology reports and clinic letters respectively. All letter sources displayed significant class imbalance, with only 15.8%, 24.9%, and 5.9% of patients linked to the respective text source documentation having undergone surgery. Untrained
Identification of patients at risk of not achieving minimally clinically important differences (MCID) in patient reported outcome measures (PROMs) is important to ensure principled and informed pre-operative decision making. Machine learning techniques may enable the generation of a predictive model for attainment of MCID in hip arthroscopy. Aims: 1) to determine whether machine learning techniques could predict which patients will achieve MCID in the iHOT-12 PROM 6 months after arthroscopic management of femoroacetabular impingement (FAI), 2) to determine which factors contribute to their predictive power. Data from the UK Non-Arthroplasty Hip Registry database was utilised. We identified 1917 patients who had undergone hip arthroscopy for FAI with both baseline and 6 month follow up iHOT-12 and baseline EQ-5D scores. We trained three established machine learning algorithms on our dataset to predict an outcome of iHOT-12 MCID improvement at 6 months given baseline characteristics including demographic factors, disease characteristics and PROMs. Performance was assessed using area under the receiver operating characteristic (AUROC) statistics with 5-fold cross validation. The three machine learning algorithms showed quite different performance. The linear logistic regression model achieved AUROC = 0.59, the deep neural network achieved AUROC = 0.82, while a random forest model had the best predictive performance with AUROC 0.87. Of demographic factors, we found that BMI and age were key predictors for this model. We also found that removing all features except baseline responses to the iHOT-12 questionnaire had little effect on performance for the random forest model (AUROC = 0.85). Disease characteristics had little effect on
Introduction. Instability remains a common complication following total hip arthroplasty (THA) and continues to account for the highest percentage of revisions in numerous registries. Many risk factors have been described, yet a patient-specific risk assessment tool remains elusive. The purpose of this study was to apply a machine learning algorithm to develop a patient-specific risk score capable of dynamic adjustment based on operative decisions. Methods. 22,086 THA performed between 1998–2018 were evaluated. 632 THA sustained a postoperative dislocation (2.9%). Patients were robustly characterized based on non-modifiable factors: demographics, THA indication, spinal disease, spine surgery, neurologic disease, connective tissue disease; and modifiable operative decisions: surgical approach, femoral head size, acetabular liner (standard/elevated/constrained/dual-mobility). Models were built with a binary outcome (event/no event) at 1-year and 5-year postoperatively. Inverse Probability Censoring Weighting accounted for censoring bias. An ensemble algorithm was created that included Generalized Linear Model, Generalized Additive Model, Lasso Penalized Regression, Kernel-Based Support Vector Machines, Random Forest and Optimized Gradient Boosting Machine. Convex combination of weights minimized the negative binomial log-likelihood loss function. Ten-fold cross-validation accounted for the rarity of dislocation events. Results. The 1-year model achieved an area under the curve (AUC)=0.63, sensitivity=70%, specificity=50%, positive predictive value (PPV)=3% and negative predictive value (NPV)=99%. The 5-year model achieved an AUC=0.62, sensitivity=69%, specificity=51%, PPV=7% and NPV=97%. All cohort-level accuracy metrics performed better than chance. The two most influential predictors in the model were surgical approach and acetabular liner. Conclusions. This machine learning algorithm demonstrates high sensitivity and NPV, suggesting screening tool utility. The model is strengthened by a multivariable dataset portending differential dislocation risk. Two modifiable variables (approach and acetabular liner) were the most influential in dislocation risk. Calculator utilization in “app” form could enable individualized risk prognostication. Furthermore, algorithm development through machine learning facilitates perpetual
Femoroacetabular Impingement (FAI) syndrome, characterised by abnormal hip contact causing symptoms and osteoarthritis, is measured using the International Hip Outcome Tool (iHOT). This study uses machine learning to predict patient outcomes post-treatment for FAI, focusing on achieving a minimally clinically important difference (MCID) at 52 weeks. A retrospective analysis of 6133 patients from the NAHR who underwent hip arthroscopic treatment for FAI between November 2013 and March 2022 was conducted. MCID was defined as half a standard deviation (13.61) from the mean change in iHOT score at 12 months. SKLearn Maximum Absolute Scaler and Logistic Regression were applied to predict achieving MCID, using baseline and 6-month follow-up data. The
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors. This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation.Aims
Methods
The National Hip Fracture Database (NHFD) publishes hospital-level risk-adjusted mortality rates following hip fracture surgery in England, Wales and Northern Ireland. The performance of the risk model used by the NHFD was compared with the widely-used Nottingham Hip Fracture Score. Data from 94 hospitals on patients aged 60 to 110 who had hip fracture surgery between May 2013 and July 2013 were analysed. Data were linked to the Office for National Statistics (ONS) death register to calculate the 30-day mortality rate. Risk of death was predicted for each patient using the NHFD and Nottingham models in a development dataset using logistic regression to define the models’ coefficients. This was followed by testing the performance of these refined models in a second validation dataset.Objectives
Methods