Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 17 - 17
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular MoP THRs. A recent retrospective observational study (Matharu et al, 2016, BMC Musc Dis) showed that the risk of ARMD revision surgery is increasing in MoP THRs. To the authors' best knowledge, no hip simulator tests have investigated material loss from the taper-trunnion junction of contemporary MoP THRs. Methods. A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm. 3. ) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates). Results and Discussion. The mean volumetric wear rates for CoCrMo heads, XLPE liners and titanium trunnions were 0.019, 2.74 and 0.013 mm. 3. /Mc respectively. There was a statistically significant decrease (p<0.001) in the Sa of the liners post-test. This is in contrast to the femoral heads roughness in which no change was observed (p = 0.338). This head roughness result matches with a previous MoP in vitro test (Saikko, 2005, IMechE-H). The Sa of the head tapers on the worn area showed a statistically significant increase (p<0.001) compared with unworn, with an associated removal of the original machining marks. The mean volumetric wear rate of the head tapers obtained using the CMM (0.028 ± 0.016 mm. 3. /Mc) was not statistically different (p=0.435) to the mean volumetric wear rate obtained gravimetrically (0.019 ± 0.020 mm. 3. /Mc) for the femoral heads. Therefore, wear of the heads arose mainly from the internal taper. The mean wear rates of the CoCrMo taper and titanium trunnion are in agreement with a MoP explant study (Kocagoz et al, 2016, CORR). Conclusion. This is the first long-term hip simulator study to report wear generated from the taper-trunnion junction of MoP hips


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 26 - 26
1 May 2016
Shah S Walter W de Steiger R Munir S Tai S Walter W
Full Access

Introduction. Dislocation is one of the leading causes of revision after primary total hip arthroplasty (THA). Polyethylene wear is one of the risk factors for late dislocations (>2 years). It can induce an inflammatory response resulting in distension and thinning of the pseudocapsule, predisposing the hip to dislocation. Alternatively, eccentric seating of the femoral head in a worn out socket may result in an asymmetric excursion arc predisposing the hip to impingement, levering out and dislocation. Highly cross linked polyethylene has a significantly lower wear rate as compared to conventional polyethylene. Incidence of late dislocations has been shown to be significantly greater with conventional polyethylene bearings as compared to ceramic bearings. However, there is no literature comparing the risk of dislocation between ceramic- on- ceramic (CoC) bearings with metal/ceramic- on- cross linked polyethylene (M/CoP) bearings and this was the aim our study. Methods. Data regarding revision for dislocation after primary THA for osteoarthritis (OA) between September 1999 and December 2013 was obtained from the Australian Orthopaedic Association National Joint Replacement Registry (AOA NJRR). Revision risk for dislocation was compared between CoC, CoP, and MoP bearings. Only those THAs with 28 mm, 32 mm, or 36 mm heads were included in the study. Results. The numbers at risk (0 years) in the CoC, CoP, and MoP groups were 53,648; 23,746; and 90,040 THAs respectively. The overall revision (dislocation)/100 observed years was 0.13. Revision rate/100 observed years in the CoC, CoP, and MoP groups was 0.12, 0.12, and 0.16 respectively. The cumulative percentage revision for dislocation (CPRD) for the three bearing types is shown in figure 1. The CPRD at 12 years in the CoC, CoP, and MoP groups was 0.9, 1.0 and 1.2 respectively. The rise in CPRD between 2 and 12 years (late dislocations) was 0.4, 0.6, and 0.6 in the CoC, CoP, and MoP groups respectively (Figure 1). The age and gender adjusted hazards ratio (HR) for revision for dislocation in CoC vs. CoP groups was 1.05 (p=0.684, 1month+); in MoP vs. CoP group was 1.45 (p<0.001, entire period) and MoP vs. CoC group was 1.55 (p<0.001, 6 month+). Computation of age and gender adjusted HR comparing the three bearing groups after stratification according to head sizes (28 mm, 32 mm and 36 mm) showed no significant difference in HR after 3 months (p≥0.061). Conclusion. The revision (dislocation)/100 observed years was greater in the MoP group as compared to CoC and CoP groups (MoP > CoC = CoP). The age and gender adjusted HR (revision for dislocation) was significantly greater in the MoP group as compared to CoC and CoP groups after 6 months. However, when the data was stratified according to head sizes, the age and gender adjusted HR was similar between the three bearing groups after 3 months. In conclusion, there is no significant difference in the risk of revision for dislocation between CoC, CoP, and MoP bearings after adjusting for age, gender, and head size after 3 months


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 17 - 17
1 Jan 2016
Skrepnik N Slagis S
Full Access

INTRODUCTION. Metallic ion release may be related to bearing surface wear and thus serve as an indicator of in-vivo performance of metal on metal (MOM) articulations. OBJECTIVES. Compare large head MOM hip components with modular MOM and metal on polyethylene (MOP) to determine their relative effects on serum metal ion levels. METHODS. A prospective controlled trial to compare clinical, radiographic, and serum metal ion concentration (Co and Cr) results between the Large Head ASR XL System (MOM-1), the Ultamet Advanced Modularity System (MOM-2), and the Pinnacle Acetabular Cup System with polyethylene liner (MOP). We enrolled 151 consecutive patients (MOM-1 = 97, MOM-2 = 22, MOP = 32). Radiographs, clinical scores (Harris Hip and WOMAC), and serum ion level assessments (in Parts Per Billion - PPB) were performed pre-operatively and post-operatively (6, 12, and 24 months for all patients and 60 months for MOM-1). At 60 months, we compared WOMAC, Harris Hip scores and serum ion levels (Co and Cr) from MOM-1 (revisions excluded) to 24 month scores from MOM-2 and MOP. After revision, serum ion levels were measured at 1, 3, 6, and 12 months. RESULTS. In MOM-1, 11 patients had significantly elevated ion levels at all postoperative periods (Co AVG 130.35 PPB and Cr AVG 61.46 PPB) after 2 years. Excluding outliers and revised patients, average serum ion levels in the 86 remaining MOP-1 patients at 24 and 60 months were statistically higher than MOP and MOM-2 patients. However, this difference was not clinically relevant (no symptoms, no revisions, Co and Cr AVG below 5 PPB). Table 1. Nine hips (9.3%) in 8 MOM-1 patients required revision and serum ion levels decreased rapidly post-up, but have still not returned to baseline after 1 year. Serum ion levels were not significantly different between MOM-2 and MOP groups at any time. Clinical scores improved after surgery in all groups and continued to improve in MOM-2 and MOP patients after 2 years, but decreased slightly in the MOM-1 patients at 2 and 5 years. Average cup inclination angle did not differ significantly between the groups: MOM-1 50.2, MOM-2 47.8, and MOP 51.7. CONCLUSIONS. We are presenting 5 years of prospectively collected data comparing ion levels among 2 MOM and 1 MOP group, as well as post revision ion levels at 1 year. Average serum ion levels were elevated at all post-operative periods in the MOM-1 group, but this was attributable to significantly elevated levels in a subset of outliers that ultimately required revision. Excluding these outliers, there is a statistically significant but clinically irrelevant difference in post-operative ion levels between MOM-1 vs. MOM-2 and MOP. There was no radiographic evidence of component malposition or aseptic loosening in any group. MOM-2 and MOP performed comparatively across all variables. We present an algorithm to diagnose and manage patients with MOM THA (Yable 2.) and offer evidence that metal ion levels do decrease after revision. Table 3


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 12 - 12
1 Apr 2019
Campbell P Kung MS Park SH
Full Access

Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of severe impingement wear on one proximal end. Discussion. This study of retrieved axle components demonstrated varying types of surface wear damage but no clear evidence of corrosion. This is presumably because these parts are in nearly constant motion during gait. Third-body damage may have resulted from the breakdown of surface carbides, leading to scratching, abrasion and wear polishing under high contact stress. Severe impingement wear presumably occurred after catastrophic damage to the polyethylene bushings, allowing eccentric loading and extensive metal wear. The components were revised for a range of clinical reasons including aseptic loosening and the need to expand the prosthesis during growth. With the exception of the few cases with severe impingement, it is unlikely that the wear features seen here contributed to the need for revision. While it was reassuring that corrosion was not a prominent feature of these modular M-M articulations, retrieval analysis of DFR components should be continued to confirm this finding, better document the in vivo wear processes and point to design features that might be improved for future patients. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 89 - 89
1 May 2019
Engh C
Full Access

Ceramic-on-polyethylene (COP) bearings have traditionally been reserved for younger patients that were at high risk of polyethylene wear requiring revision. With the 1999 advent of highly crosslinked polyethylene (XLP), wear with XLP has not been a cause for revision. Simulator studies have not shown a difference in wear comparing COP to metal-on-polyethylene (MOP). Therefore, and considering the additional cost of COP, we have until recently not needed COP. However, a 2012 report of 10 cases that developed an adverse reaction to metal debris generated by head neck corrosion has resulted in COP becoming the most common bearing surface as reported by the American Joint Replacement Registry. This reactionary change has occurred despite the fact that we do not understand the cause, do not know the frequency, if it is more common in some implants than others, and we do not know the additional cost or markup of ceramic heads. One study reported a 3.2% revision prevalence caused by mechanically assisted crevice corrosion (MACC) at the head neck junction of a single manufacturer's implant. Other studies have estimated the frequency to be less than 5%. COST IS THE CONCERN in a value based healthcare environment. Models for and against the wholesale use of COP have been proposed and are based on variables that are unknown, including estimated frequency of the problem and the incrementally higher cost of a ceramic head. I use COP in younger patients that I believe will use their hip for more than 15 years. This is based on my personal experience. I have prospectively followed a series of MOP patients for 5 years and not seen cobalt elevations. I have placed new metal femoral heads on corroded femoral tapers without subsequent failure. I have evaluated the taper junctions of postmortem retrievals and found them virtually free of corrosion. A query of our institutional database for MOP primary hips identified 3012 cases between 2006–2017. Eighty revisions (2.7%) were identified. 2 of the 80 were for MACC representing 2.5% of revisions done on our own patients and 0.07% of our MOP cases. Further, evaluating our most recent all cause 350 revisions (7/2015–10/2017) there were 3 revisions for MACC (0.9%). Each one of us needs to EVALUATE OUR OWN PRACTICE AND MAKE AN EDUCATED, VALUE BASED DECISION whether or not to use COP in all patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 45 - 45
1 Jun 2012
Dhinsa B Gallagher K Nawaz Z Spiegelberg B Hanna S Tai S Pollock R Carrington R Cannon S Briggs T
Full Access

The aim of this study is to investigate whether Metal-on-Metal (MoM) implants result in more chromosome aberrations and increased blood metal ions post-operatively when compared to Metal-on-Polyethylene (MoP) implants. Metal-on-metal arthroplasties are being inserted in increasing numbers of younger patients due to the increased durability and reduced requirement for revision in these implants. Recent studies have raised many concerns over possible genotoxicity of MoM implants. This is a prospective study of patients who have undergone elective total hip replacement, they were selected and then randomised into two groups. Group A received a MoP implant and group B received a MoM implant. Patients are reviewed pre-operatively (control group), at 3 months, 6 months, 1 year and 2 years post-operatively. On each occasion blood tests are taken to quantify metal ion levels (chromium, cobalt, titanium, nickel and vanadium) using HR-ICPMS method and chromosome aberrations in T lymphocytes using 24 colour fluorescent in situ hybridisation (FISH). 53 patients have been recruited to date. 24 of whom had MoP prosthesis and 29 a MoM. 37 of these have had their one year follow-up with blood analysis and 14 have had 2 year follow up. Cobalt and chromium concentration increased during the first 6 months in both MoM and MoP groups, in the MoM group the chromium levels were twice that of MoP group and 12x that of the preoperative samples. Chromosome aberrations occurred in both groups. At 6 months both the MoM and MoP groups showed increase frequency of aneuploidy aberrations with further increases after one year. Structural damage in the form of translocations occurred in the MoM group after one year, but not in the MoP group, by two years there was a profound increase in translocations Preliminary results of this study show that the levels of chromium and cobalt are significantly higher in the MoM group compared to the MoP group. This corresponds to increases in chromosome aberrations in the groups with increases in structural chromosome damage after two years


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 16 - 16
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study. Methods. Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc). BIOLOX. ®. delta ceramic femoral heads were mounted on 12/14 titanium (Ti6Al4V) trunnions. Wear of femoral heads, acetabular liners and trunnions was determined gravimetrically using the analytical balance. Roughness measurements (Sa) were taken on the articulating surfaces (pre and post-test) and on the trunnion surfaces (worn and unworn). Furthermore, Energy Dispersive X-ray Spectroscopy (EDX) was used to identify and quantify the wear debris present in the lubricant using scanning electron microscope (SEM). Results and Discussion. The total volumetric wear was 0.25 mm. 3. for CoC joints and 0.29 mm. 3. for titanium trunnions. The total wear volume of the titanium trunnions was in agreement with an explant study (Kocagoz et al, 2016, CORR) which quantified the volumetric material loss from retrieved trunnions with the total wear ranging from 0.0–0.74 mm. 3. The Sa values, pre-and post-test, for heads were 0.003 ± 0.002 and 0.004 ± 0.001 µm and for liners were 0.005 ± 0.001 and 0.005 ± 0.001 µm. Pre-and post-test measurements for Sa of heads (p = 0.184) and liners (p = 0.184) did not show a statistically significant change. The Sa of the trunnions on the unworn and worn areas showed a statistically significant decrease from 0.558 ± 0.060 to 0.312 ± 0.028 µm respectively (p < 0.001). Analysis of wear debris within the lubricant confirmed the presence of titanium. A recent clinical study (Matharu et al, 2016, BMC Musc Dis) found more ARMD in CoC hips than MoP hips. This is despite there being fewer metallic components in a CoC hip than a MoP hip. This in vitro study has shown that one source of metal debris in a CoC hip is the taper-trunnion junction. Conclusion. An explanation for wear related failures in ceramic-on-ceramic hip arthroplasty, despite the low wear arising at the articulating surfaces, may now exist; namely that titanium wear particles are generated from the trunnion. No other long-term hip simulator studies have measured wear at the taper-trunnion junction


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 6 - 6
1 Jun 2018
Parvizi J
Full Access

Periprosthetic joint infection (PJI) is a devastating complication of total hip arthroplasty (THA). According to registry-based studies, some bearing couples are associated with an increased risk of PJI. The recent International Consensus on Periprosthetic Joint Infection stated that metal-on-metal (MOM) bearing surface appeared to be associated with a higher incidence of PJI. Based on emerging reports, the incidence of PJI appears to be different among different bearing surfaces. We conducted a multi-institutional study attempting to study this exact issue. The purpose of the study was to determine whether there was any difference in the incidence of PJI in two commonly used bearing couples (metal- on-polyethylene versus ceramic-on-polyethylene). Based on a retrospective multi-institutional query all patients who received primary THA with MOP or COP bearing surfaces performed during 2005–2009 in two high-volume arthroplasty centers were identified. Demographic factors, comorbidities, length of hospital stay, complications and other relevant information were extracted. PJI was defined based on the MSIS (International Consensus) criteria. Multivariate analysis was performed to determine whether bearing coupling was independently correlated with PJI. In our data, 25/2,921 (0.9%) patients with MOP and 11/2,643 (0.4%) patients with COP developed PJI. This difference was statistically significant (p=0.01). After the multivariate analysis, controlling for potential confounders (age, body mass index and length of hospital stay, Charlson comorbidity index), MOP bearing surface was found to be an independent factor correlating with higher incidence of PJI (odds ratio: 2.6, 95% confidence interval: 1.02–6.54, p=0.04). The finding of this study, and others from centers in Europe, suggest that the bearing surface may have an influence on the incidence of PJI. Although, we had originally thought that ceramic bearing surfaces may be used in younger and healthier patients, the multivariate analyses that controlled for all these variables confirms that use of metal femoral head is an independent risk factor for development of PJI. The finding of this study is compelling and begs for future basic science mechanistic investigations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 27 - 27
1 Sep 2012
Dawson-Bowling S Yeoh D Edwards H East D Ellens N Miles K Butler-Manuel P Apthorp H
Full Access

Introduction. Debate continues regarding the relative advantages of ceramic-on-ceramic (CoC) and metal-on-polyethylene (MoP) articulations in total hip arthroplasty (THA). Perceived benefits of CoC include longevity, and low wear - in turn limiting the effects of particulate wear debris. However, CoC bearings cost significantly more, and concern remains over the risk of ceramic fracture; a complication not seen with MoP bearings, which are also cheaper. Method. We electronically randomised 268 consecutive patients undergoing THA to receive either a CoC or MoP articulation. Patients aged over 72 were excluded. In all patients the prosthesis used was an uncemented ABG II (Stryker, USA), implanted by one of the two senior authors (HDA, ABM). Patients were scored preoperatively, and at annual follow-up clinics, using SF36, Visual Analogue (VAS), Merle d'Aubigné (MD) and Oxford Hip (OHS) Scores. Satisfaction levels were also documented. Results. Follow-up ranged from 4–10 years (mean 73.9 months). 56 patients died or were lost to follow-up, leaving 212 (79.1%); 102 CoC and 110 MoP respectively. There was no statistical difference in age, follow-up, pre-operative scoring, surgeon numbers of each prosthesis or sex distribution between groups. 5 CoC patients underwent revision surgery, compared with 4 MoP. Mean follow-up scores in the CoC group were: SF36 67.9, VAS 1.5, MD 16.5 and OHS 28.2, for the MoP cohort, results were: SF36 61.1, VAS 2.4, MD 16.3 and OHS 21.8. None of these were statistically significant differences, and satisfaction levels were the same between groups. Discussion. Our data suggest that, up to 10 years, both articulations give equal satisfaction, survivorship and functional outcomes. Anecdotally, many surgeons appear increasingly to favour ceramic bearings in THA; although longer follow-up may be needed to demonstrate any advantages of ceramic over MoP, results such as ours should perhaps be considered when making this decision


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 3 - 3
1 Jun 2018
Engh C
Full Access

Ceramic-on-polyethylene (COP) bearings have traditionally been reserved for younger patients that were at high risk of polyethylene wear requiring revision. With the 1999 advent of highly crosslinked polyethylene (XLP), wear with XLP has not been a cause for revision. Simulator studies have not shown a difference in wear comparing COP to metal-on-polyethylene (MOP). Therefore, and considering the additional cost of COP, we have until recently not needed COP. However, a 2012 report of 10 cases that developed an adverse reaction to metal debris generated by head neck corrosion has resulted in COP becoming the most common bearing surface as reported by the American Joint Replacement Registry. This reactionary change has occurred despite the fact that we do not understand the cause, do not know the frequency, if it is more common in some implants than others, and we do not know the additional cost or markup of ceramic heads. One study reported a 3.2% revision prevalence caused by mechanically assisted crevice corrosion (MACC) at the head neck junction of a single manufacturer's implant. Other studies have estimated the frequency to be less than 5%. COST IS THE CONCERN in a value based health care environment. Models for and against the wholesale use of COP have been proposed and are based on variables that are unknown, including estimated frequency of the problem and the incremental cost of a ceramic head. I use COP in younger patients that I believe will use their hip for more than 15 years. This is based on my personal experience. I have prospectively followed a series of MOP patients for 5 years and not seen cobalt elevations. I have placed new metal femoral heads on corroded femoral tapers without subsequent failure. I have evaluated the taper junctions of postmortem retrievals and found them virtually free of corrosion. A query of our institutional database for MOP primary hips identified 3012 cases between 2006–2017. Eighty revisions (2.7%) were identified. Two of the 80 were for MACC representing 2.5% of revisions done on our own patients and 0.07% of our MOP cases. Further, evaluating our most recent all cause 350 revisions (7/2015-10/2017) there were 3 revisions for MACC (0.9%). Each one of us needs to EVALUATE OUR OWN PRACTICE AND MAKE AN EDUCATED, VALUE BASED DECISION whether or not to use COP in all patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 140 - 140
1 Dec 2013
Moga I Harrington MA Ismaily S Noble P
Full Access

Introduction. The failure rate of Total Hip Replacement (THR) has been shown to be strongly influenced by the nature of the articulating interfaces, with Metal-on-Metal (MoM) articulations having three times the failure rate of Metal-on-Polyethylene (MoP) components. It has been postulated that this observation is related to edge wear and increased bearing torque of large MoM heads, which would lead to increased loading and wear at the head taper junction and, subsequently, to the release of metal ions and corrosion products. This suggests that taper wear and corrosion should not be as prevalent in large head MoP implants as in large head MoM implants. This study was undertaken to test the hypotheses that: (i) MoM implants exhibit higher rates of corrosion and fretting at the head taper junction than MoP implants, and that (ii) the severity of corrosion and fretting is greater in components of larger head diameter. Materials and Methods. Our study included 90 modular implants (41 MoM; 49 MoP) retrieved during revision hip arthroplasties performed between 1992 and 2012. Only retrievals with head diameters greater than 32 mm were included, and trunnion sizes ranged from 10/12 mm to 14/16 mm with 12/14 mm being the most common size. The stem trunnion and head taper surfaces were examined under stereomicroscope by a single observer. Each surface was scored for both corrosion (using a modified Goldberg scoring system) and fretting (using the standard Goldberg scoring system). For both the trunnion and head tapers, the student's t-test was used to determine if differences exist in the severity of corrosion or fretting between the MoM and MoP groups and between different head sizes of the same articulation type. Results. Overall, there was no significant difference in the severity of corrosion or fretting damage of femoral head taper surfaces or in the fretting of stem trunions between articulation types (p values: 0.245 to 0.733) or head sizes (p values: 0.333 to 0.680). However, corrosion damage of the trunions did vary with the type of articulation (p = 0.0069) and with head size (p = 0.0145). MoP trunnions were found to have significantly more corrosion damage than MoM trunnions at head diameters greater than 40 mm (p = 0.005). Discussion. The surprising conclusion of this study is that the severity of trunnion corrosion in MOP articulations, which surpassed the tribo-corrosion of MOM joints, especially when the prosthetic head size exceeded 40 mm. This conclusion is consistent with the presence of moderate to severe third-body damage in many large diameter polyethylene liners which would lead to a large increase in the frictional torques generated during hip motion. In addition, only part of the loading of the trunnion arises from increased frictional torque. The increase in head size, especially in designs with an offset head center, will lead to increased toggling, and accelerated wear and corrosion of the taper junction, independent of the bearing surface material


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 1 - 1
1 Sep 2012
Ramaskandhan J Malviya A Bowman R Lingard E Holland J
Full Access

Introduction. Cemented stems have shown 90–100% survivorship when coupled with polyethylene acetabular component. This study aims to compare cemented stem behaviour in combination with large metal on metal (MOM) vs. metal on poly (MOP) bearings. Patients and Methods. 100 patients were recruited into a single centre RCT (we required 40 in each group for power .90 to confirm stem subsidence of >0.5mm at 2 years; p< 0.05). Recruits were randomized to MOP (28mm) or MOM femoral heads with CPCS cemented femoral stem. Assessments included X-rays (AP pelvis), Harris Hip Scores, blood metal ion levels and patient questionnaires (WOMAC, SF-36, satisfaction questionnaire). Evaluations were done pre-operatively and 3, 12 and 24 months post operatively; blood metal ion measures at 1 year. Results. There were 50 patients in each arm of study matched for age (64 ± 8.5) and BMI (29.04 ±5.5). There was no difference in femoral stem subsidence at 2 years 1.34 (±1.3) and 1.4 (±1.2) mm for MOM and MOP respectively (p=0.88). There was significant improvement in HHS from pre-op to 3 months: 41 to 87 for MOM and 44 to 86 for MOP (p=0.00). This was maintained with no difference between groups at 2 years (p=0.74). Similar pattern was seen for WOMAC and SF-36 scores for both groups at 2 years (p>0.05). Increased blood Cobalt and Chromium levels were observed in 17% and 0% for MOM and MOP group. MOM group reported better patient satisfaction for overall (91% vs. 79%), pain relief (82% vs 66%) and improvement in ADL activities (94% vs.70%) at 2 years. Conclusions. There were no significant differences between groups for stem behavior, clinical and patient reported outcomes. Despite higher patient satisfaction reported by MOM patients, increased metal ion levels had raised concerns regarding the use of MOM bearings with cemented stems for primary THR


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 114 - 114
1 Mar 2017
Yoon P Lee S Kim J Kim H Yoo J
Full Access

Alternative bearing surfaces has been introduced to reduce wear debris-induced osteolysis after total hip arthroplasty (THA) and offered favorable results. Large population-based data for total joint surgery permit timely recognition of adverse results and prediction of events in the future. The purpose of this study was to present the epidemiology and national trends of bearing surface usage in primary total hip arthroplasty (THA) in Korea using nationwide database. A total of 30,881 THAs were analyzed using the Korean Health Insurance Review and Assessment Service database for 2007 through 2011. Bearing surfaces were sub-grouped according to device code for national health insurance claims and consisted of ceramic-on-ceramic (CoC), metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), and metal-on-metal (MoM). The prevalence of each type of bearing surface was calculated and stratified by age, gender, hospital type, primary payer, and procedure volume of each hospital. The number of primary THAs increased by 25.2% from 5,484 in 2007 to 6,866 in 2011. The average age of the entire study population was 58.1 years, and 53.5% were male [Table 1]. CoC was the most commonly used bearing surface (76.7%), followed by MoP (11.9%), CoP (7.3%), and MoM (4.1%). The distribution of bearing surfaces was identical to that in the general population regardless of age, gender, hospital type, and primary payer [Table 2]. The mean age of patients that received hard-on-hard bearing surfaces (CoC and MoM) was significantly younger than that of patients receiving hard-on-soft bearing surfaces (CoP and MoP) (56.9 years vs. 62.6 years). During the study period, 55.1% of THAs that used a hard-on-hard bearing surface were performed in males, while 53.0% of THAs that used a hard-on-soft bearing surface were performed in females. The order of prevalence of bearing surfaces was identical in low- and medium-volume hospitals (CoC was first, MoP was second, CoP was third, and MoM was fourth). The mean hospital charges did not differ according to the bearing surface used, with the exception of CoP, which was associated with a lower mean hospital charge. There were no changes in the distribution of bearing surfaces in each year between 2007 and 2011. Overall, the percentage of THAs that used CoC bearing surfaces increased substantially from 71.6% in 2007 to 81.4% in 2011, while the percentage that used CoP, MoP, and MoM decreased significantly [Fig. 1]. One of the reasons for the dominant usage of hard-on-hard bearing surfaces may be that the principal diagnosis of primary THAs and the patient age group distribution in Korea differ from those in other countries. The most common indication for primary THA is osteonecrosis of the femoral head in Korea. In contrast, the majority of primary THAs are performed for osteoarthritis in Western countries. The choice of bearing surface may be affected by many factors, including the nation's medical delivery system, payment type, disease pattern, and age distribution of patients that undergo THA. In future, the results of a large-scale nationwide study on primary THAs using CoC bearing surfaces in Korea will be reported. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 281 - 281
1 Dec 2013
De Villiers D Kinbrum A Traynor A Collins S Banfield S Housden J Shelton J
Full Access

Introduction. Vitamin-E has been introduced into highly-crosslinked polyethylene liners to reduce the oxidation potential of the material while maintaining low wear rates. However, little has been reported on adverse testing of the material with one test on diffused vitamin-E polyethylene [1] and no adverse tests of vitamin-E blended polyethylene reported. Adverse testing of crosslinked polyethylene has focused on the use of large diameters, the incorporation of third body particles, roughening of the counterface or severe activity [2–4]. This investigation considers the wear of vitamin-E blended highly-crosslinked polyethylene under standard and adverse conditions articulating against uncoated and chromium nitride (CrN) coated metal heads. Methods. Seven metal heads were tested against prototype ϕ52 mm 0.1 wt% vitamin-E blended highly-crosslinked polyethylene liners (Corin, UK). Three heads remained as cast double heat treated metal (MoP) while four, of similar metallurgy, were coated with CrN via electron beam physical vapour deposition (CrNoP) (Tecvac, UK) and polished to a similar surface finish. Tests were conducted for 5 million cycles (mc) under conditions described in ISO 14242–3: 2009. Alumina particles (mean size 2.4 μm) at concentrations of 0.15 mg/mL were added to the lubricant for 1 mc to consider the effect of severe head damage. Testing continued for a further 1 mc without the presence of the particles and then 3 jogging intervals (14,400 cycles each) were conducted at slow, medium and fast speeds [3]. Wear volume was determined gravimetrically for the heads and liners and fluid collected throughout the testing was analysed for cobalt concentration using graphite furnace atomic absorption spectroscopy. Results. Wear rates of the liners were similar under standard conditions for both combinations (Figure 1). The introduction of alumina particles created a 17 fold increase in the wear of the MoP liners and increased head wear and cobalt release rates (Figure 2). Damage to the uncoated metal heads was observed as the average surface roughness Ra, of the uncoated heads was rougher (0.018 μm) than the coated heads (0.007 μm). The CrNoP bearings showed a small increase in liner and head wear but not cobalt release. The removal of the alumina particles saw the CrNoP bearings recover in liner and head wear while wear of the liners and cobalt release remained elevated in MoP bearings. Jogging did not significantly increase the wear of the MoP and CrNoP liners. Discussion. Under standard testing the use of large diameter MoP appears low wearing, but adverse conditions can increase the polyethylene wear and cobalt release. During 3. rd. body testing higher cobalt levels than those reported in adverse metal-on-metal tests [5] were observed, although this test was extreme and not clinically relevant. CrN coating the heads showed improved wear resistance and reduced cobalt release during all forms of adverse testing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 78 - 78
1 Mar 2017
Pasko K Hall R Neville A Tipper J
Full Access

Surgical interventions for the treatment of chronic neck pain, which affects 330 million people globally, include fusion and cervical total disc replacement (CTDR). Most of the currently clinically available CTDRs designs include a metal-on-polymer (MoP) bearing. Numerous studies suggest that MoP CTDRs are associated with issues similar to those affecting other MoP joint replacement devices, including excessive wear and wear particle-related inflammation and osteolysis. A standard ISO testing protocol was employed to investigate a device with a metal-on-metal (MoM) bearing. Moreover, with findings in the literature suggesting that the testing protocol specified by ISO-18192-1 may result in overestimated wear rates, additional tests with reduced kinematics were conducted. Six MoM CTDRs made from high carbon cobalt-chromium (CoCr) were tested in a six-axis spine simulator, under the ISO-18192-1 protocol for a duration of 4 million cycles (MC), followed by 2MC of modified testing conditions, which applied the same axial force as specified in ISO-18192-1 (50-150N), but reduced ranges of motion (ROM) i.e. ±3° flexion/extension (reduced from ±7.5°) and ±2° lateral bending (reduced from ±6°) and axial rotation (reduced from ±4°). Foetal bovine serum (25% v/v), used as a lubricant, was changed every 3.3×10. 5. cycles and stored at −20°C for particle analysis. Components were measured after each 1×10. 6. cycles; surface roughness, damage modes and gravimetric wear were assessed. The wear and roughness data was presented as mean ±95% confidence interval and was analysed by one-way analysis of variance (ANOVA) (p=0.05). The mean wear rate of the MoM CTDRs tested under the ISO protocol was 0.246 ± 0.054mm. 3. /MC, with the total volume of wear of 0.977 ± 0.102mm. 3. lost over the test duration (Fig. 1). The modified testing protocol resulted in a significantly lower mean volumetric wear rate of 0.039 ± 0.015mm. 3. /MC (p=0.002), with a total wear volume of 0.078 ± 0.036mm. 3. lost over the 2MC test duration. Under both test conditions, the volumetric wear was linear; with no significant bedding-in period observed (Fig. 1). The mean pre-test surface roughness decreased from 0.019 ± 0.03µm to 0.012 ± 0.002µm (p=0.001) after 4MC of testing, however surface roughness increased to 0.015 ± 0.002µm (p=0.009) after the additional 2MC of modified test conditions. Following 4MC of testing, polishing marks, observed prior to testing, had been removed. Consistently across all components, surface discolouration and multidirectional, criss-crossing, curvilinear and circular wear tracks, caused by abrasive wear, were observed. Reduced ROMs testing caused similar types of damage, however the circular wear tracks were smaller in size, compared to those produced during testing under the ISO protocol. The wear rates exhibited by MoM CTDRs tested under ISO-18192-1 testing protocol (0.246mm. 3. /MC) were lower, when compared to CTDR designs incorporating MoP bearings, as well as MoM lumbar CTDRs. Wear rates generated under a modified ISO testing protocol were reduced tenfold, similarly to findings that have previously been reported in the literature, and support the hypothesis that the testing protocol specified by ISO-18192-1 may overestimate wear rates. Characterisation of particles generated by MoM CTDRs and biological consequences of those remain to be determined. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 71 - 71
1 Feb 2017
Chotanaphuti T Khuangsirikul S
Full Access

Background. Hard-on-hard bearings showed advantages of reduction of wear rates, osteolysis and aseptic loosening in total hip arthroplasty (THA). A new combination of ceramic-on-metal (COM) was developed to compensate the disadvantages of MOM and COC. COM showed good short-term results in vitro and in vivo studies. There was no report of stripe wear and metal ion level elevation. Our study was designed to evaluate the wear pattern of this bearing in early loosening THA. Methods. During January 2009 to December 2010, 121 primary THAs were performed at our institution by single-surgeon, using the same acetabular component and same uncemented femoral stem with a 32-mm modular head. All patients received the information of the bearing couples and made their own decision to choose one of the following bearings: COM, MOP and MOM. The functional outcomes (Harris Hip Score), Serum Co and Cr levels and survival rates were compared between groups at 5 years. The retrievals were tested by optical microscopy and Raman spectroscopy to evaluate the wear pattern in the cases those need revision. Results. At the follow-up 5 years ago, 2 in 10 patients of the COM group received revision due to bearing related complications and loosening although MOP and MOM groups have good clinical follow-up without revision. Metal ion levels were higher in the revision cases. The retrieval analyses revealed metal transfer at weight-bearing area of ceramic femoral head and large wear located on the center of acetabular liner. Spectral shift and broadening of Raman bands demonstrated incorporation of metal ions into the ceramic lattices. Conclusion. Wear pattern in COM was the same as MOM. Severe metal contamination at the ceramic surface might be affected from frictional heating. While the actual causes and contributing factors of high failure rate in COM were not clearly identified, it is important to take precautions in using COM THA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 5 - 5
1 Apr 2018
Pitto R
Full Access

Ceramic-on-ceramic bearings are considered in several European and Asian countries a reliable alternative to metal-on-polyethylene, ceramic-on-polyethylene, or metal-on-metal (with small diameter heads) for total hip arthroplasty (THA) management. Reduced joint wear and limited peri-prosthetic osteolytic changes are the main reasons supporting the use of ceramic. So far, the available observational data show a low rate of revision following the use of Ceramic-on-Ceramic bearings, but concern remains regarding the risk of fracture and the prevalence of squeaking noises from the joint. The objective of this study was to use a national arthroplasty registry to assess whether the choice of bearings – metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), ceramic-on-ceramic (CoC), or metal-on-metal (MoM) – is associated with differences in the risk of revision. Data from primary THAs were extracted from the New Zealand Joint Registry over a 15-year period. 97,889 hips were available for analysis. The mean age of patients was 68 years (SD +/− 11 years), and 52% were women. The median followup period in this patient population was 9 years (range, 1 to 15 years). The primary endpoint was revision for any reason. Inclusion criteria were degenerative joint disease (84,894), exclusion criteria were previous surgery, trauma, and any other diagnosis (12,566). We also excluded patients operated on with a Ceramic-on-Metal THA, because of the small recorded number (429). There were 54,409 (64.1%) MoP, 16,503 (19.4%) CoP, 9,051 (10.7%) CoC and 4,931 (5.8%) MoM hip arthroplasties. 3,555 hips were revised during the 15-year observation period. A multivariate assessment was carried out including the following risks factors available for analysis: age, gender, surgeon experience, use of cement. Analysis of bearing surface type and revision showed a statistically significant lower risk for CoC hips (265 THAs, p≤0.01) when compared with CoP (537 THAs, HR 1.07, CI 0,92–1,26), MoP (2186 THAs, HR 1.39, CI 1.19–1,62), and MoM (576 THAs, HR 2.15, CI 1.84–2.51). The 15-year follow-up Kaplan-Meier survival analysis shows a 92% revision-free rate for CoC THAs (Figure 1). In particular, CoC THAs showed the lowest rates of revision for dislocation and for deep infection, when compared with the other bearings. This registry study showed that the bearing surface is associated with the risk of revision. MoM bearing surfaces showed a high rate of revisions, while CoC THAs showed the lowest rate of revision compared to other bearing surfaces. Low wear and less osteolysis are the possible reasons for reduced risk of revision for aseptic loosening. We postulate that the healthy, fibrotic synovial-like pseudocapsule found in CoC THAs preserves the long-term stability of the joint and reduces the bio-burden for late deep infection. Future studies with larger data sets and longer follow-up should continue to investigate this query. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 72 - 72
1 May 2016
Juszczyk M de Uhlenbrock A Kelnberger A Heinrich W
Full Access

Introduction. Failure of the polyethylene glenoid component is the most common complication of Total Shoulder Arthroplasty (TSA) and accounts for a majority of the unsatisfactory results after this procedure. Nowadays, most of the shoulder prostheses consist of metal on polyethylene bearing components. Repetitive contact between the metal ball and the polyethylene socket produces progressive abrasion of the implant if the moving part is made of polyethylene. Its debris may then lead to an active osteolysis and implant loosening. Failure of the glenoid component is often manifested clinically by pain, loss of function, and the presence of a clunking noise and leads to revision surgery. The use of ceramic balls aims at the reduction of this phenomenon. In many studies regarding knee and hip replacement it has been shown that the use of ceramic on polyethylene (CoP) is more beneficial in terms of polyethylene wear and failure, when compared to metal on polyethylene (MoP). Since a human shoulder is very different from a hip and a knee, it is not a self-centering, neither congruent joint. And its stability is provided by healthy muscles of the rotator cuff. We decided to compare CoP against MoP in semi- force controlled test setup. Where, for a given governing angular motion the translational motion was a function of contact (frictional) forces between the tested couple (humeral head and PE). This is to our knowledge the first study to address in direct comparison wear in TSA in semi force controlled test setup. Materials and methods. Up today, there is no test standard for wear testing of TSA. A customised joint simulator was used to create worst-case scenario motion allowing for simulation of the muscles in two perpendicular axes: inferior – superior (I-S) and anterior – posterior (A-P). Were a governing angular motion (GAM) was the abduction – adduction (±30°) in I-S. A system of springs was created so that the I-S translation and the A-P rotation were a result of the GAM. The stiffens of the springs was tuned based on the MoP pair initial kinematic (1000 cycles) to result in: about 2mm I-S translation, and about ±10° A-P rotation. All samples were tested at the same test station in order to obtain maximal repeatability. Axial load was in range of 100N to 750 N. Three articulating couples for each material were tested for total of 2M cycles. Standard midterm gravimetric measurements were conducted at each 0.5 M cycles. Results. Wear rates after 2Mc were: MoP-30.48 ± 4.86 mg/M cycles; against CoP-16.33 ± 1.95 mg/M cycles


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 89 - 89
1 Sep 2012
Shetty V Kasture S
Full Access

The most appropriate bearings in young patients remain highly debated. The aim of this metaanalysis was to summaries the best available evidence on relative success of the three most popular bearings [metal-on-poly (MOP), metal-on-metal (MOM) and ceramic-on-ceramic (COC)] used in total hip replacement (THR) in young active patients. All the relevant studies published in the English language were retrieved. Studies with THR in patients with mean age less than 55 years of age were selected. The survivorship analysis for the three important bearings at 10 years was evaluated. Ten-year survival rates suggest that MOM bearings performed significantly better than MOP (p=0.01) and COC (p=0.001). MOP revealed higher survival rates than COC bearings (p=0.05). Our findings support the use of MOM bearings in the management of the young arthritic hip. These findings, largely based upon observational studies should be taken in context to the limitations of such non-randomized study designs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 69 - 69
1 May 2019
Rosenberg A
Full Access

Papers to be discussed during this session include: Surgical approach and THA results - does it matter?; Minimizing infection in TJA - doing all you can….; I&D or Revision, 1 vs. 2 stage for infected TKA - now or later?; Barbed sutures - friend or foe?; Constraint in TKA - promises and pitfalls!; Tendonitis after THA - minimizing the pain; MRI after THA - when and why…….; Pain, opioids, and outcomes - sorting fact from fictions!; Outpatient TKA - home free?; TKA in general - does home matter?; Drainage after TKA - mopping up the mess!; Head size in THA - does it matter, help or hurt?; Hip bone connected to the spine bone - so what!; Tourniquet in TKA - does it make a difference?; Standardise or personalise? - that is the question!; Trusting the robot - really?; The TKA - rotation, rotation, rotation