Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 47 - 47
1 Apr 2017
Jelsma J Senden R Schotanus M Kort N Grimm B Heyligers I
Full Access

Background

The second generation metal-on-metal (MoM) prosthesis of the hip became a worldwide success in the 90s. However, after the placement of a MoM prosthesis the cobalt ion concentrations raise significantly. This may lead to systemic complaints and even cobalt toxicity.

Methods

Sixty-one patients (26F/35M) with both an unilateral and bilateral resurfacing or large-head MoM (LHMoM) hip prosthesis were included. At last follow-up (5.77 ± 1.57 yrs) cobalt concentrations in the blood were determined by ICP-MS. Based on the known cobalt toxicity symptoms we developed a non-validated questionnaire. Analysis was done on two groups; a low cobalt concentration group and a high cobalt concentration group. We used 170 nmol/L as the upper limit of well functioning prosthesis as defined by the Dutch Orthopaedic Society (NOV). Independent samples T test and Pearson correlation coefficient were done.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 49 - 49
1 Jul 2014
Gwyn R Mahmood S Malik I Maheson M John A Lyons C Jones S
Full Access

Summary

162 patient cohort with serial Metal Artefact Reduction Sequence MRI scans. Patients with normal initial scans can be followed up at 1 year. Those with abnormal scans should be followed up at a shorter interval of 6 months.

Introduction

Cross-sectional imaging is a key investigation in the assessment and surveillance of patients with metal-on-metal (MoM) hip arthroplasty. We present our experience of Metal Artefact Reduction Sequence (MARS) MRI scanning in metal on metal hip arthroplasty. We aimed to investigate the natural history and radiological disease progression from Adverse Reactions to Metallic Debris.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 913 - 917
1 Aug 2003
Clarke MT Lee PTH Arora A Villar RN

Metal-on-metal (MOM) bearings for hip arthroplasty are increasing in popularity. Concern remains, however, regarding the potential toxicological effects of the metal ions which these bearings release.

The serum levels of cobalt and chromium in 22 patients who had undergone MOM resurfacing arthroplasty were compared with a matched group of 22 patients who had undergone 28 mm MOM total hip arthroplasty (THA).

At a median of 16 months (7 to 56) after resurfacing arthroplasty, we found the median serum levels of cobalt and chromium to be 38 nmol/l (14 to 44) and 53 nmol/l (23 to 165) respectively. These were significantly greater than the levels after 28 mm MOM THA which were 22 nmol/l (15 to 87, p = 0.021) and 19 nmol/l (2 to 58, p < 0.001) respectively.

Since the upper limit for normal patients without implants is typically 5 nmol/l, both groups had significantly raised levels of metal ions. MOM bearings of large diameter, however, result in a greater systemic exposure of cobalt and chromium ions than bearings of small diameter. This may be of relevance for potential long-term side-effects. It is not known to what extent this difference is due to corrosion of the surfaces of the component or of the wear particles produced.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 835 - 842
1 Jun 2009
Hart AJ Skinner JA Winship P Faria N Kulinskaya E Webster D Muirhead-Allwood S Aldam CH Anwar H Powell JJ

We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged < 65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders.

Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 70 - 70
1 May 2017
Anjum S Mawdesley A Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Adverse reactions to metal debris are implicated in the failure of metal-on-metal hip arthroplasty. The peri-implant tissues are often infiltrated by leukocytes which may cause observed immunological effects, including soft tissue necrosis and osteolysis. Cobalt ions from orthopaedic implants aberrantly activate the innate immune receptor human toll-like receptor-4 (TLR4), leading to inflammatory cytokine release including interleukin-8 (IL-8). IL-8 has been shown to increase expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These factors are essential for leukocyte adhesion to endothelium, which is required for leukocyte migration into tissues. This study investigates cobalt's effect on gene and protein changes in IL-8, ICAM-1 and VCAM-1 to determine their potential role in immune cell infiltration of peri-implant tissues. Methods. TLR4-expressing human dermal microvascular endothelial cells (HMEC-1) were treated with a range of clinically relevant cobalt ion concentrations. IL-8 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression changes were quantified by TaqMan-based real time polymerase chain reaction. Results. Stimulation with cobalt ions significantly increases IL-8 secretion (n=3) in HMEC-1 cells. This is a TLR4-specific effect as a small molecule TLR4 antagonist inhibited cobalt-induced IL-8 secretion. Following cobalt treatment (0.75mM cobalt chloride) there is a 12-fold increase in ICAM-1 (p-value=0.0004) and a 6-fold increase in VCAM-1 (p-value<0.0001) gene expression. Work will be undertaken to determine the role of TLR4 in these responses. Conclusion. Cobalt increases IL-8 secretion and adhesion molecule gene expression in HMEC-1 cells. This in vitro finding demonstrates the potential for cobalt ions to increase leukocyte adhesion to the endothelial surface. This may contribute to leukocyte infiltration of peri-implant tissues in metal-on-metal hip arthroplasty failure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 69 - 69
1 Jan 2017
Van Der Straeten C Banica T De Smet A Van Onsem S Sys G
Full Access

Systemic metal ion monitoring (Co;Cr) has proven to be a useful screening tool for implant performance to detect failure at an early stage in metal-on-metal hip arthroplasty. Several clinical studies have reported elevated metal ion levels after total knee arthroplasty (TKA), with fairly high levels associated with rotating hinge knees (RHK) and megaprostheses. 1. In a knee simulator study, Kretzer. 2. , demonstrated volumetric wear and corrosion of metallic surfaces. However, prospective in vivo data are scarce, resulting in a lack of knowledge of how levels evolve over time. The goal of this study was to measure serum Co and Cr levels in several types TKA patients prospectively, evaluate the evolution in time and investigate whether elevated levels could be used as an indicator for implant failure. The study was conducted at Ghent University hospital. 130 patients undergoing knee arthroplasty were included in the study, 35 patients were lost due to logistic problems. 95 patients with 124 knee prostheses had received either a TKA (primary or revision) (69 in 55 patients), a unicompartimental knee arthroplasty (7 UKA), a RHK (revision −7 in 6 patients) or a megaprosthesis (malignant bone tumours − 28 in 27 patients). The TKA, UKA and RHK groups were followed prospectively, with serum Co and Cr ions measured preoperatively, at 3,6 and 12 months postoperatively. In patients with a megaprosthesis, metal ions were measured at follow-up (cross-sectional study design). In primary knees, we did not observe an increase in serum metal ion levels at 3, 6 or 12 months. Two patients with a hip arthroplasty had elevated preTKA Co and Cr levels. There was no difference between unilateral and bilateral knee prostheses. In the revision group, elevated pre-revision levels were found in 2 failures for implant loosening. In both cases, ion levels decreased postoperatively. In revisions with a standard TKA, there was no significant increase in metal ions compared to primary knee arthroplasty. RHK were associated with a significant increase in Co levels even at short-term (3–12 months). The megaprosthesis group had the highest metal ion levels and showed a significant increase in Co and Cr with time in patients followed prospectively. With the current data, we could not demonstrate a correlation between metal ion levels, size of the implant or length of time in situ. In primary knee arthroplasty with a standard TKA or UKA, metal ion levels were not elevated till one year postoperatively. This suggests a different mechanism of metal ion release in comparison to metal-on-metal hip arthroplasties. In two cases of revision for implant loosening, pre-revision levels were elevated, possibly associated with component wear, and decreased after revision. With RHK, slightly elevated ion levels were found prospectively. Megaprostheses had significantly elevated Co and Cr levels, due to corrosion of large metallic surfaces and/or wear of components which were not perfectly aligned during difficult reconstruction after tumour resection. Further research is needed to assess the clinical relevance of metal ion levels in knee arthroplasty


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 124 - 124
1 Mar 2021
Jelsma J Schotanus M Kleinveld H Grimm B Heyligers I
Full Access

An increase in metal ion levels is seen after implantation of all MoM hip prosthesis due to release from the surface directly, more so during articulation and corrosion of the bearing surfaces. The bearing surfaces in MoM prosthesis consist of cobalt, chromium and molybdenum. Several case-reports of cobalt toxicity due to a MoM prosthesis have been published in the last decade. Cobalt intoxication may lead to a variety of symptoms: neuro-ocular toxicity (tinnitus, vertigo, deafness, blindness, convulsions, headaches and peripheral neuropathy), cardiotoxicity and thyroid toxicity. Nausea, anorexia and unexplained weight loss have been described. Systemic effects from metal ions even with well functioning implants or with ion concentrations lower than those associated with known adverse effects may exist and warrant investigation. The aim of this study is to investigate self-reported systemic complaints in association with cobalt ion concentrations in patients with any type of MoM hip prosthesis. A cohort study was conducted. Patients with both unilateral and bilateral, resurfacing and large head metal on metal total hip arthroplasties were included for the current study. Blood metal ion concentrations (cobalt and chromium) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Based on the known cobalt toxicity symptoms of case-reports and toxicology reports a new non-validated questionnaire was developed. questions were subdivided in general questions/symptoms, vestibular symptoms, neurological symptoms, emotional health and cardio- and thyroid toxicity symptoms. Independent samples T test, Fishers Exact Test and Pearsons (R) correlation were used. Analysis was performed on two groups; a low cobalt ion concentration group and a high cobalt ion concentration group A total of 62 patients, 36 (58%) men and 26 (42%) women, were included with a mean age at surgery of 60.8 ± 9.3 years (41.6 – 78.1) and a mean follow up of 6.3 ± 1.4years (3.7 – 9.6). In these patients a total of 71 prosthesis were implanted: 53 unilateral and 9 bilateral. Of these, 44 were resurfacing and 27 large head metal on metal (LHMoM) total hip arthroplasties. Mean cobalt and chromium ion concentrations were 104 ± 141 nmol/L (9 – 833) and 95 ± 130nmol/L (6 – 592), respectively. Based on the different thresholds (120 – 170 or 220 nmol/L) the low cobalt ion concentration group consisted of 44 (71%), 51 (82%) or 55 (89%) subjects respectively. No differences were found in general characteristics, independently of the threshold. The composite score of vestibular symptoms (vision, hearing, tinnitus, dizziness) was significantly higher (p < .050) in all high cobalt ion concentrations groups, independent of the threshold value This study aimed to detect a trend in self-reported systemic complaints in patients with metal-on-metal hip arthroplasty due to raised cobalt ion concentrations. Vestibular symptoms were more common in high cobalt ion concentration groups independent of the three threshold levels tested. The upper limit of acceptable cobalt ion concentrations remains uncertain. With regards to proactively inquired, self-reported symptoms the threshold where effects may be present could be lower than values currently applied in clinical follow-up. It is unknown what exposure to elevated metal ion concentrations for a longer period of time causes with aging subjects. Further research with a larger cohort and a more standardized questionnaire is necessary to detect previously undiscovered or under-reported effects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1655 - 1659
1 Dec 2007
Anwar HA Aldam CH Visuvanathan S Hart AJ

The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control. Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 10 - 10
1 Jan 2019
Shah KM Heath PR Bradford JR Gartland A Wilkinson JM
Full Access

Commonly used alterations of prosthetic surfaces include grit-blasting (GB), plasma-sprayed titanium (Ti) or hydroxyapatite (HA) coating. Systemic concentrations of cobalt (Co) and chromium (Cr) are elevated in patients with metal-on-metal hip replacement, but can occur for all modular hip replacements. Here, we use whole genome microarrays to assess differential gene expression in primary human osteoblasts grown in vitro and on these prosthesis surfaces following exposure to clinically relevant concentrations of Co and Cr. Mesenchymal cells obtained from bone-fragments of 3 patients undergoing joint replacement surgery were differentiated into osteoblasts. Subsequently, cells were cultured in vitro on tissue-culture plates (TCP), or on GB, Ti and HA surfaces (JRI Orthopaedics Ltd, Sheffield, UK). Following 24hr exposure to a combination of clinically equivalent concentrations of Co2+:Cr3+, RNA was extracted and hybridized to SurePrint-G3 Gene Expression Microarray. Probe signals were normalised using ‘Limma’ package on R-Bioconductor and differential gene expression assessed with empirical Bayes approach (Log2FC>1.00, P<0.001 for differentially expressed genes). For cells grown on TCP, 11 genes were upregulated with 500μg/L Co2+:Cr3+. Of these, 4 were associated to HIF-1 signalling based on KEGG pathway analysis (P=5.4e-5). Exposure to 1000μg/L Co2+:Cr3+ altered expression at 164 loci for HA surfaces, and a separate 50 loci for Ti surfaces compared to GB surfaces. Genes for osteoblast differentiation (BMP2 and RGS2) were downregulated on HA surfaces compared to GB, whilst genes for cell-adhesion (ESAM), vesicular trafficking (RAB37) and protection against oxidative damage (NRF2) were upregulated. Ti surfaces caused an upregulation in ERBB3 and CNTF, which are associated with inhibition of osteoblast differentiation and mineralisation, when compared to GB surfaces. This study confirms the role of HIF-1 signalling in response to prosthesis generated metal ions, and is the first to provide a comprehensive genome-wide insight into transcriptional response of osteoblasts at prosthesis surface to clinically equivalent metal exposure


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 140 - 140
1 Jul 2014
Hjorth M Søballe K Jakobsen S Lorenzen N Mechlenburg I Stilling M
Full Access

Summary. Five year migration results of 49 large-head metal-metal (MoM) total hip arthroplasties show good implant stability and no association between implant migration and metal-ions levels, stem and cup position, or femoral bone mineral density. Introduction. The failure mechanism of metal-metal (MoM) total hip arthroplasty has been related to metal wear-debris and pseudotumor, but it is unknown whether implant fixation is affected by metal wear-debris. Patients and Methods. In July-August 2012 41 patients (10 women) at a mean age of 47 (23–63) years with a total of 49 MoM hip arthroplasties (ReCap Shell/M2a-Magnum head/Bi-Metric stem; Biomet Inc.) participated in a 5–7 year follow-up with blood tests (chrome and cobalt serum ions), questionnaires (Oxford Hip Score (OHS) and Harris Hip Score (HHS), measurement of cup and stem position and periprosthetic BMD. Further the patients had been followed with stereo-radiographs post-operative and at 1, 2 and 5 years for analysis of implant migration (Model-Based RSA 3.32). Results. 4 patients (6 hips) had elevated metal-ion levels (>7ug/l). The mean cup inclination was 45°(sd 6), the mean cup anteversion was 17°(sd7), and the mean stem anteversion was 19°(sd7). The difference between genders was statistically insignificant (p>0.09). At 5 years follow-up total translation (TT) for the stems (n=39 hips) was a mean 0.79mm (sd 0.53) and total rotation (TR) was a mean 1.99° (sd 1.53). Between 1–2 years there was no significant difference in mean TT (p=0.49)for the stems and between 2–5 years TT was mean 0.13 mm (sd 0.35) which was significant (p=0.03) but clinically very small and within the precision limits of the method. We found no significant migration along the 3 separate axes. There was no significant association between stem migration and metal ion levels >7ug/l (p=0.55), female gender (p=0.86), stem anteversion > 25° (p=0.29), T-scores < −1 (p=0.23), total OHS < 40 (p=0.19) or total HHS < 90 (p=0.68). Between 1–5 years there was no significant change in neither subsidence (p=0.14) nor in version (p=0.91) of the stems. At 5 years TT for the cups (n=36) was mean 1.21 mm (sd 0.74) and TR was mean 2.63° (sd 1.71). Between 1–2 years cup migration along the z-axis was mean 0.29 (sd 0.73) (p=0.03), which was also within precision limits of the method. There was a positive association between total OHS below 40 (n=4) and cup migration (p=0.04), but no association between cup migration and metal ion levels >7ug/l (p=0.80), female gender (p=0.74), cup inclination > 50° (p=0.93), cup anteversion > 25° (p=0.88) or HHS < 90 (p=0.93). Proximal cup migration at 5 years was mean 0.46 mm (sd 0.47), which was similar to the cup migration at 1 year (p=0.91) and 2 years (p=0.80) follow-up. No patients were revised before the final 5–7 year follow-up. Patient satisfaction was high (94%). Conclusion. All cups and stems were well-fixed between 1–5 years. We found no statistical significant correlation between implant migration and other factors that have been associated with failure of MoM hip arthroplasty such as elevated metal ion levels, component position, and female gender. Cup migration was higher in patients with a total OHS below 40. In conclusion, metal wear-debris does not seem to influence fixation of hip components in large-head MoM articulations at mid-term follow-up


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 204 - 204
1 Jul 2014
Drynda A Singh G Buchhorn G Kliche S Feuerstein B Ruetschi M Lohmann C
Full Access

Summary Statement. CXCR4 gene and protein expression is regulated in a dose and time-dependent manner by metallic wear debris but not polyethylene wear debris in vitro and in vivo. Introduction. Progressive osteolysis leading to aseptic loosening among metal-on-metal (MoM) total hip arthroplasties (THA's), and adverse reactions to metallic debris (ARMD) are increasing causes for concern among existing patients who have been implanted with MoM hip replacements. Close surveillance of these patients is necessary and difficulties lie in early detection as well as differentiating low-grade infection from ARMD in the early stages. Several inflammatory markers have been investigated in this context, but to date, none is specific with regards to the offending material. In earlier studies, it has been shown that osteoblastic phenotypes and differentiation are regulated by different types of wear particles. Methods. In vitro experiments were performed using MG63 and SaOs-2 osteoblast-like cells co-cultured with increasing concentrations of metallic (Co-35Ni-20Cr-10Mo and Co-28Cr-6Mo) and polyethylene (UHMWPE-GUR1020) particles simulating periprosthetic wear debris. Real-time Polymerase Chain Reaction (RT-PCR) and Western Blotting were used to quantify gene and protein expression of CXCR4. The expression of TNF-a and the effects of AMD3100 on both CXCR4 and TNF-a expression among these cells was also investigated. Immunohistochemical techniques were used to investigate the in-vivo expression of CXCR4 in retrieval tissues obtained from 2 cohorts of failed metal-on-metal and ceramic-on-polyethylene THA's. Results. In-vitro RT-PCR and experiments demonstrated a dose-dependent increase in CXCR4 mRNA (7.5 fold for MG63 and 4.0 fold for SaOs-2 cells) among cells co-cultured with metal alloy particles. Western blotting also showed a time-dependent increase in protein expression of CXCR4. No regulatory effects on CXCR4 gene expression were seen among cells co-cultured with UHMWPE particles. The attempted blockade of CXCR4 by it's known competitive receptor agonist AMD3100 (bicyclam) led to a significant inhibition of metal particle induced TNF-a mRNA expression. In-vivo immunohistochemical data from the 2 cohorts of patients with failed THA's showed CXCR4 positivity among 83% of patients with metal-on-metal hip replacements but none among ceramic-on-polyethylene hip replacements. Discussion/Conclusion. CXCR4, the chemokine receptor for the chemokine SDF-1 (stromal cell derived factor-1), has been shown to play a pivotal role in bone metastasis, inflammatory and autoimmune conditions but has not been investigated in the context of periprosthetic osteolysis in failed joint replacements. Our in-vivo and in-vitro findings collectively suggest that the CXCR4 chemokine is specifically upregulated in a dose and time-dependent manner in the presence of metallic (cobalt-chrome) wear debris but not by polyethylene wear debris. The CXCR4 chemokine receptor may be a selective and specific biomarker for progressive osteolysis seen in failed MoM hip replacements and this phenomenon could potentially have a translational effect on the practice of orthopaedic surgery. Further research is needed to evaluate the interactions of CXCR4 with osteoclast activation and signalling pathways


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 28 - 28
1 May 2012
Masters J Sandison A Diss T Lali F Skinner J Hart A
Full Access

Metal-on-metal (MOM) hip resurfacings release chromium and cobalt wear debris into the surrounding joint. The hip tissue taken from failed MOM hips shows specific histological features including a subsurface band-like infiltrate of macrophages with particulate inclusions, perivascular lymphocytic infiltrate and fibrin exudation. This tissue response has been called Aseptic Lymphocytic Vasculitis Associated Lesion (ALVAL). There is a recognised carcinogenic potential associated with hexavalent chromium and epidemiological data from first generation MOM arthroplasties may suggest an increased incidence of haematological malignancy. The ALVAL type reaction includes a marked proliferation of lymphocytes in the perivascular space and thorough investigation of this lymphocytic response is warranted. This study aims to further characterise the lymphocytic infiltrate using immunohistochemistry and to test clonality using polymerase chain reaction (PCR). Tissues from revised all cause failed MOM hip arthroplasties (n=77) were collected and analysed initially using routine H&E staining. Those that met the diagnostic criteria of ALVAL described above (n=34) were further stained with a panel of immunohistochemical markers (CD3, CD4, CD8 (T-cell markers) and CD20 (B-cell marker)). 10 representative ALVAL cases were selected and sent for gene rearrangement studies using PCR to determine whether the lymphocytes were polyclonal or monoclonal in nature. The analysis of the lymphocytic aggregates in ALVAL, showed a mixed population of B and T cells. Within the aggregates, there was a predominance of B cells (CD20) over T cells (CD3). Of the 10 cases which were analysed by PCR, 7 were suitable for interpretation. None of these cases showed evidence of monoclonal lymphocyte proliferation. The carcinogenic potential of wear debris from MOM hips, particularly affecting the haematopoietic system should be investigated. This study has shown a predominantly B-lymphocyte response in tissues surrounding MOM hips which is polyclonal. Although the numbers are small, the study suggests an immune mediated response in MOM hip tissue and excludes a neoplastic proliferation. However, long term follow up of patients with MOM hips may be prudent


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 292 - 292
1 Jul 2014
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A
Full Access

Summary. Metal-on-metal hip replacements have been associated with adverse reactions including inflammatory pseudotumours and soft tissue necrosis. We have shown that cobalt can directly activate toll-like receptor 4, an immune receptor causing pro-inflammatory interleukin-8 secretion. This may contribute to adverse reaction development. Introduction. Metal-on-metal hips have the highest failure rate of any joint arthroplasty material. Reasons for failure include the development of pseudotumours, soft tissue necrosis and pain around the affected joint. The adverse reactions appear to be inflammatory as failing joints are often infiltrated by immune cells such as lymphocytes. However the exact cellular and biological mechanisms underlying this inflammation are unknown. Toll-like receptor 4 (TLR4) is found on the surface of immune cells including macrophages and dendritic cells. It is activated by lipopolysaccharide (LPS) from Gram negative bacteria, inducing an immune response against the pathogen through increased secretion of pro-inflammatory cytokines. It has recently been shown that nickel can activate TLR4, causing inflammation. Cobalt, a component of many metal-on-metal joints, is adjacent to nickel in the periodic table and shares a number of nickel's properties. Consequently we hypothesised that cobalt ions from metal-on-metal joints can activate TLR4. Methods. An in vitro cell culture model was developed using human and murine TLR4 reporter cell lines to investigate the effects of metal ions, including cobalt, on TLR4. Real-time PCR was used to examine the effect of cobalt on inflammatory gene expression, including IL-8, CCL-2 and IRAK-2, while an ELISA assay was conducted to investigate IL-8 protein expression in a human macrophage cell line (MonoMac 6). The TLR4 agonist LPS was included as a positive control and as a negative control TLR4 activation was blocked using the chemical agonist CLI-095 (Invivogen, UK). Results. Using human TLR4 reporter cells we show that cobalt at clinically-relevant concentrations can activate human TLR4. This effect appears unique to humans as murine TLR4 is unresponsive to cobalt but still responds to LPS. We also demonstrate that in human macrophages physiologically-relevant concentrations of cobalt cause increased pro-inflammatory IL-8 secretion (p<0.001). IL-8 is involved in perpetuating the immune response by recruiting more inflammatory cells to the site of inflammation. Cobalt-induced IL-8 secretion can be blocked using a TLR4 antagonist (p<0.001) showing that the effect is due to cobalt activation. Cobalt ions also alter gene expression in human macrophages. Cobalt upregulates expression of IL-8 and IRAK2 genes; IRAK2 is a key component of the TLR4 signalling pathway. Interestingly, cobalt causes downregulation of the CCL2 gene whereas it is upregulated in response to LPS. Discussion. In this study we have demonstrated that cobalt ions can activate human TLR4 signalling and in human macrophages this can increase expression of pro-inflammatory IL-8. We have also developed a robust series of assays for determining the effects of metal ions and other orthopaedic materials on the TLR4 signalling pathway. These methods will be used to investigate the immunological effects of additional orthopaedic metals (e.g. chromium, titanium and molybdenum). This work has identified a key pathway involved in the immune response to metal ions which can now be investigated for genetic variability and as a potential therapeutic target


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1439 - 1444
1 Oct 2005
Davies AP Sood A Lewis AC Newson R Learmonth ID Case CP

Previous research has shown an increase in chromosomal aberrations in patients with worn implants. The type of aberration depended on the type of metal alloy in the prosthesis. We have investigated the metal-specific difference in the level of DNA damage (DNA stand breaks and alkali labile sites) induced by culturing human fibroblasts in synovial fluid retrieved at revision arthroplasty.

All six samples from revision cobalt-chromium metal-on-metal and four of six samples from cobalt-chromium metal-on-polyethylene prostheses caused DNA damage. By contrast, none of six samples from revision stainless-steel metal-on-polyethylene prostheses caused significant damage. Samples of cobalt-chromium alloy left to corrode in phosphate-buffered saline also caused DNA damage and this depended on a synergistic effect between the cobalt and chromium ions.

Our results further emphasise that epidemiological studies of orthopaedic implants should take account of the type of metal alloy used.