Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 949 - 954
1 Jul 2011
Bisseling P Zeilstra DJ Hol AM van Susante JLC

The purpose of this study was to evaluate whether concerns about the release of metal ions in metal-on-metal total hip replacements (THR) should be extended to patients with metal-bearing total disc replacements (TDR). Cobalt and chromium levels in whole blood and serum were measured in ten patients with a single-level TDR after a mean follow-up of 34.5 months (13 to 61) using inductively-coupled plasma mass spectrometry. These metal ion levels were compared with pre-operative control levels in 81 patients and with metal ion levels 12 months after metal-on-metal THR (n = 21) and resurfacing hip replacement (n = 36). Flexion-extension radiographs were used to verify movement of the TDR. Cobalt levels in whole blood and serum were significantly lower in the TDR group than in either the THR (p = 0.007) or the resurfacing group (p < 0.001). Both chromium levels were also significantly lower after TDR versus hip resurfacing (p < 0.001), whereas compared with THR this difference was only significant for serum levels (p = 0.008). All metal ion levels in the THR and resurfacing groups were significantly higher than in the control group (p < 0.001). In the TDR group only cobalt in whole blood appeared to be significantly higher (p < 0.001). The median range of movement of the TDR was 15.5° (10° to 22°). These results suggest that there is minimal cause for concern about high metal ion concentrations after TDR, as the levels appear to be only moderately elevated. However, spinal surgeons using a metal-on-metal TDR should still be aware of concerns expressed in the hip replacement literature about toxicity from elevated metal ion levels, and inform their patients appropriately


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 19 - 19
1 Apr 2014
Yoon W Panagiotidou A Noordeen H Blunn G
Full Access

Aim:. The aim of this study was test the amount of corrosion occurring at the (Ti) /cobalt chrome (CoCr) interface comparing this with Ti and Ti interfaces. This was compared with retrieved metal work visualised under a scanning electron microscope (SEM). Methods:. The interface of interest is the interface between rod and the screw. We investigated corrosion seen at that interface with a CoCr rod coupled to a Ti screw versus a Ti rod coupled to a Ti screw (6 screws were used) Implants were loaded according to the ASTM F2193 – 02 Standard Specifications and Test Methods for Components Used in the Surgical Fixation of the Spinal Skeletal System. Pitting potentials were monitored using cyclic potentiodynamic polarization tests (ASTM F2129 – 08 Standard Test Method for Conducting Cyclic Potentiodynamic Polarisation Measurements) to determine corrosion susceptibility. Retrieved implants were visualised under (SEM) to confirm corrosion. Results:. Mean fretting current for titanium and cobalt chrome was 7.94 (μA) and for titanium on titanium 5.89 (μA). The results of SEM showed evidence of fretting and galvanic corrosion. Discussion:. Cobalt chrome ions in hip implants have raised concern amongst the orthopaedic community. This study showed that metal ion production occurs due to fretting and galvanic corrosion. This corrosion is increased in cobalt chrome and titanium constructs but statistically more tests are required to confirm this. Further research is required to understand this interface as cobalt chrome ions pose a potential hazard to patients with their reproductive years ahead. Conflict Of Interest Statement: No conflict of interest


Bone & Joint Open
Vol. 1, Issue 7 | Pages 405 - 414
15 Jul 2020
Abdelaal A Munigangaiah S Trivedi J Davidson N

Aims

Magnetically controlled growing rods (MCGR) have been gaining popularity in the management of early-onset scoliosis (EOS) over the past decade. We present our experience with the first 44 MCGR consecutive cases treated at our institution.

Methods

This is a retrospective review of consecutive cases of MCGR performed in our institution between 2012 and 2018. This cohort consisted of 44 children (25 females and 19 males), with a mean age of 7.9 years (3.7 to 13.6). There were 41 primary cases and three revisions from other rod systems. The majority (38 children) had dual rods. The group represents a mixed aetiology including idiopathic (20), neuromuscular (13), syndromic (9), and congenital (2). The mean follow-up was 4.1 years, with a minimum of two years. Nine children graduated to definitive fusion. We evaluated radiological parameters of deformity correction (Cobb angle), and spinal growth (T1-T12 and T1-S1 heights), as well as complications during the course of treatment.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1375 - 1383
3 Oct 2020
Zhang T Sze KY Peng ZW Cheung KMC Lui YF Wong YW Kwan KYH Cheung JPY

Aims

To investigate metallosis in patients with magnetically controlled growing rods (MCGRs) and characterize the metal particle profile of the tissues surrounding the rod.

Methods

This was a prospective observational study of patients with early onset scoliosis (EOS) treated with MCGRs and undergoing rod exchange who were consecutively recruited between February 2019 and January 2020. Ten patients were recruited (mean age 12 years (SD 1.3); 2 M:8 F). The configurations of the MCGR were studied to reveal the distraction mechanisms, with crucial rod parts being the distractable piston rod and the magnetically driven rotor inside the barrel of the MCGR. Metal-on-metal contact in the form of ring-like wear marks on the piston was found on the distracted portion of the piston immediately outside the barrel opening (BO) through which the piston rod distracts. Biopsies of paraspinal muscles and control tissue samples were taken over and away from the wear marks, respectively. Spectral analyses of the rod alloy and biopsies were performed to reveal the metal constituents and concentrations. Histological analyses of the biopsies were performed with haematoxylin and eosin staining.