In this meta-analysis we included 32 English-language articles published between January 1975 and June 2004 on the diagnostic performance of plain radiography, subtraction arthrography, nuclear arthrography and bone scintigraphy in detecting aseptic loosening of the femoral component, using criteria based on the Cochrane systematic review of screening and diagnostic tests. The mean sensitivity and specificity were, respectively, 82% (95% confidence interval (CI) 76 to 87) and 81% (95% CI 73 to 87) for plain radiography and 85% (95% CI 75 to 91) and 83% (95% CI 75 to 89) for nuclear arthrography. Pooled sensitivity and specificity were, respectively, 86% (95% CI 74 to 93) and 85% (95% CI 77 to 91) for subtraction arthrography and 85% (95% CI 79 to 89) and 72% (95% CI 64 to 79) for bone scintigraphy. Although the diagnostic performance of the imaging techniques was not significantly different, plain radiography and bone scintigraphy are preferred for the assessment of a femoral component because of their efficacy and lower risk of patient morbidity.
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods
Aims. This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. Methods. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and
Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current
Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve model performance in smaller datasets. This is encouraging for wider application of machine-learning technology in
Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on
Introduction. Tibial Pilon fractures are potentially limb threatening, yet standards of care are lacking from BOFAS and the BOA. The mantra of “span, scan, plan” describes staged management with external fixation to allow soft tissue resuscitation, followed by a planning CT-scan. Our aim was to evaluate how Tibial Pilon fractures are acutely managed. Methods. ENFORCE was a multi-centre retrospective observational study of the acute management of partial and complete articular Tibial Pilon fractures over a three-year period. Mechanism, imaging, fracture classification, time to fracture reduction and cast, and soft tissue damage control details were determined. Results. 656 patients (670 fractures) across 27 centres were reported. AO fracture classifications were: partial articular (n=294) and complete articular (n=376). Initial
Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth. Using allograft tissues that would be otherwise discarded in combination with deidentified
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from
Worldwide, most spine imaging is either “inappropriate” or “probably inappropriate”. The Choosing Wisely recommendation is “Do not perform imaging for lower back pain unless red flags are present.” There is currently no detailed breakdown of lower back pain
Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from
Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management. Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury. This article reviews the optimal
Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and
Introduction and Objective. Forced external rotation is hypothesized as the key mechanism of syndesmotic ankle injuries. This complex trauma pattern ruptures the syndesmotic ligaments and induces a three-dimensional deviation from the normal distal tibiofibular joint configuration. However, current
Introduction. Pulmonary Tuberculosis (TB) can be detected by sputum cultures. However, Extra Pulmonary Spinal Tuberculosis (EPSTB), diagnosis is challenging as it relies on retrieving a sample. It is usually discovered in the late stages of presentation due to its slow onset and vague early presentation. Difficulty in detecting Mycobacterium Tuberculosis bacteria from specimens is well documented and therefore often leads to culture negative results.
Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of
Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative
True scaphoid fractures of the wrist are difficult to diagnose in children. In 5–40% of cases, a scaphoid fracture may not be detectable on initial X-ray, some fractures may take up to six weeks to become evident. Since missing a scaphoid fracture may have serious implications, many children with a suspected or “clinical” scaphoid fracture, but normal radiographs, may be over-treated. The purpose of this study was to identify predictors of true scaphoid fractures in children. A retrospective cohort study was performed using electronic medical records for all patients over a two-year period presenting to a tertiary paediatric hospital with hand or wrist injury. Charts were identified by ICD-10 diagnostic codes and reviewed for pre-specified inclusion and exclusion criteria. Patients with either a clinical or true scaphoid fracture were included. When a scaphoid fracture was suspected, but imaging was negative for fracture, the diagnosis of a clinical scaphoid fracture was made. True scaphoid fractures were diagnosed when a fracture was evident on any modality of
Adductor strain is a common injury among football players. The adductor muscle group contains the three adductor muscles. (adductor longus, magnus and brevis) Adductor longus muscle is a triangular-shaped long muscle. This muscle originates from the superior ramus of the pubic bone and inserted into the middle part of the linea aspera. Adductor longus muscle is the most commonly injured muscle of adductors. Sudden acceleration, jumping, stretching, and kicking the ball are common causes of an adductor injury. Adductor muscle strains can result in missed playing time for football players. We present a 26-year-old man soccer player with pain in the left groin and proximal thigh. The symptoms had started during training and after kicking the ball with left foot (dominant side), he felt an acute pain in the groin region and proximal thigh. Despite the injury, he managed to finish the training. The team physician examined the patient immediately after training. The range of motion of both hip joints was in normal ranges and mild pain with adduction. There was a palpable mass at the inner proximal thigh during contraction of adductor muscles. There was no history of groin pain or adductor problems before this injury. Conventional radiographs showed no osseous abnormalities. 36 hours after the injury, MRI revealed acute grade IIB strain in the left adductor longus muscle, including both superior and inferior parts of the muscle. A hematoma was observed in the superior part of the left adductor muscle, with a craniocaudal length of 42 millimeters. There was an adductor muscle strain with hyperintensity extending for a craniocaudal length of approximately 12 centimeters involving more than 50% crosses sectional diameter of the muscle belly. Conservative treatment started immediately, consisting of cold therapy and soft tissue massage. Compression of the injured tissue using a 15-cm elastic bandage roll is done to limit bleeding and provide support. Iced water machine (Game Ready) was used. The team physician examined the player every day and prescribed physiotherapy protocol daily. Additionally, short interval follow-up MRI is used to evaluate the injury. (After 7 and 14 days of the injury) No injection was performed. The player is able to return to play immediately, despite MRI's strain images. The player started straight running 5 days later and joined to team training 8 days later and played 90 minutes-league-match 12 days after injury without any pain. No injection was performed. The player is able to return to play immediately, despite MRI's strain images. The player started straight running 5 days later and joined to team training 8 days later and played 90 minutes-league-match 12 days after injury without any pain. MRI is a useful technique in diagnosing trauma in football players presenting with groin pain. In this case, to estimate time-to-return-to-play, MRI alone is not strong evidence. MRI is a good option for follow up, but anamnesis and clinical examination is not inferior to
This study aimed to evaluate the clinical outcomes of paediatric patients who underwent a retrograde drilling treatment for their osteochondritis dissecans (OCD) of the talus. The secondary purpose was to identify factors that are predictive of a failure of the treatment. A retrospective study was done. All patients treated for talar OCD between 2014 and 2017 were reviewed to extract clinical and demographic information (age, sex, BMI, OCD size and stability, number of drilling, etc). Inclusion criteria were: (1) talar OCD treated with retrograde drilling, (2) less than 18 years, (3) at least one available follow up (4) stable lesion. Exclusion criteria was another type of treatment for a the talar OCD. Additionally, all pre-operative and post-operative