Introduction. Injectable hydrogels via minimally invasive surgery reduce the risk of infection, scar formation and the cost of treatment. Degradation of the intervertebral disc (IVD) currently has no preventative treatment. An injectable hydrogel material could restore disc height, reinforce local
Introduction. Intervertebral disc degeneration (IVDD) associated with low back pain is a major contributor to global disability. Current treatments are poorly efficient in the long-term resulting in medical complications. Therefore, minimally invasive injectable therapies are required to repopulate damaged tissues and aid regeneration. Among injectable biomaterials, self-assembling peptide hydrogels (SAPHs) represent potential candidates as 3D cell carriers. Moreover, the advent of graphene-related materials has opened the route for the fabrication of graphene-containing hydrogel nanocomposites to direct cellular fate. Here, we incorporated graphene oxide (GO) within a SAPH to develop a biocompatible and injectable hydrogel to be used as cell carrier to treat IVDD. Methods and results. Hydrogel morphology and
Background. We have previously reported an injectable hydrogel (NPgel), which could deliver patients own stem cells, via small bore needles, decreasing damage to the annulus fibrosus. NPgel drives differentiation to NP cells and can inhibit the degenerate niche. However, clinical success of NPgel is dependent on the capacity to inject NPgel into naturally degenerate human discs, restore mechanical function to the IVD, prevent extrusion during loading and induce regeneration. This study assessed injectability of NPgel into human IVD, influence on
Introduction. Musculoskeletal diseases are the biggest cause of morbidity worldwide, with low back pain (LBP) being the leading cause. Forty percent of LBP cases are caused by disease of shock absorbers in the spine known as intervertebral discs (IVDs). The IVDs enable the spine to twist and bend, whilst absorbing load during normal daily activities. The durability of this tissue is sustained by the cells of the spine and so during disease or mechanical damage these cells can behave abnormally further damaging the disc and stimulating local nerves causing extreme pain. Degradation of the intervertebral disc (IVD) currently has no preventative treatment; an injectable hydrogel biomaterial could reinforce disc
Background. Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to nucleus pulposus (NP) cells without the need for additional growth factors. Here, we investigated the behaviour of hMSCs incorporated within the hydrogel injected into NP tissue. Methods. hMSCs were injected either alone or within NPgel, into bovine NP tissue explants and maintained at 5% O. 2. for up to 6wks. Media alone and acellular NPgel were also injected into NP explants to serve as controls. Cell viability was assessed by Caspase 3 immunohistochemistry and the phenotype of injected hMSC was assessed by histology and immunohistochemistry.
Background. For bone grafting procedures, the use of autologous bone is considered the gold standard, as it is has a better healing capacity compared to other alternatives as allograft and synthetic bone substitutes. However, as there are several drawbacks related to autografting (infection, nerve- or vascular damage, chronic pain problems, abdominal herniation), there has been a targeted effort to improve the healing capacities of synthetic bone substitutes. Aim. To evaluate the performance of a carbonated osteoionductive hydroxyapatite (CHA) scaffold of clinical relevant size (Ø=15mm, H=50mm) in a sheep model of multi level posterolateral intertransverse lumbar spine fusion after activation with autologous bone marrow nuclear cells (BMNC) in a flow perfusion bioreactor. Method. Two groups were included in the study, autograft (n=6) and CHA scaffold (n=6) CHA. A paired design was used between and within the groups as lumbar posterolateral arthrodesis was performed in sheep on two levels (L2-L3, L5-L6) +/− BMNC, respectively. Before implantation, the CHA scaffold was cultured in a flow perfusion bioreactor system with BMNC for 21 days, and the autograft group was supplemented with isolated BMNC during the procedure. Micro tomography was used to evaluate fusion rate and the microarchitectural properties of the explants after an observation period of four months. Results. In the autograft group, the healing rate was 83.3% irrespective of the presence BMNC, and in the CHA group, 66.7% fused in the presence of BMNC, and 33.3% without. The microarchitectural data suggested the autograft group to be superior to the CHA scaffold regarding
Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired Objectives
Materials and Methods