Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 55 - 55
2 Jan 2024
Stroobant L Jacobs E Arnout N Van Onsem S Burssens A Victor J
Full Access

7–20 % of the patients with a total knee arthroplasty (TKA) are dissatisfied without an indication for revision. Therapeutic options for this patient population with mostly a lack of quadriceps strength are limited. The purpose of this study is to evaluate the effect of six weeks low load resistance training with blood flow restriction (BFR) on the clinical outcome in these unhappy TKA patients. Thirty-one unhappy TKA patients (of the scheduled fifty patients) without mechanical failure were included in this prospective study since 2022. The patients participate in a supervised resistance training combined with BFR, two times a week during nine weeks. Patients were evaluated by the Knee Osteoarthritis Outcome Score (KOOS), Knee Society Score: satisfaction (KSSs) and the Pain Catastrophizing Scale (PCS). Functionality was tested using the Six Minute Walk Test (6MWT) and the 30-Second Chair Stand Test (30CST). Follow-up took place at six weeks, three months and six months after the start. Six weeks training with BFR provided statistically significant improvements in all the KOOS subscales compared to the baseline, especially for symptoms (55.1 (±15.4) versus 48.0 (±16.5); p<0.001), activities in daily living (50.3 (±21.1) versus 43.7 (±17.2); p<0.00) and quality of life (24.6 (±18.5) versus 17.3 (±13.0); p<0.001). The PCS reduced from 27.4 (±11.0) to 23.2 (±11.4) at six weeks (p<0.01), whereas the KSSs increased from 11.8 (±6.5) to 14.9 (±7.6) (p=0.021). Both the 6MWT and the 30CST improved statistically significant from respectively 319.7 (±15.0) to 341.6m (±106.5) (p<0.01) and 8.6 (±3.9) to 9.3 times (±4.5) (p<0.01). Blood flow restriction appears to enhance the quality of life and functional performance of unhappy TKA patients. Based on these preliminary results, BFR seems to be a promising and valuable alternative for these TKA patients with limited therapeutic options


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 15 - 15
4 Apr 2023
Luk J
Full Access

Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth. Using allograft tissues that would be otherwise discarded in combination with deidentified diagnostic imaging (MRI and CT), a model of a large shell osteochondral allograft was recreated using LS-PrePost and FEBio based on clinically relevant elastic material properties for cortical bone, trabecular bone, cartilage, and hole ingrowth tissue. The 0.8 mesh size model consisted of 4 mm trabecular bone, 4 mm cortical bone, and 3 mm cartilage sections that summed to a cross-sectional area of 1600 mm2 (40 mm x 40 mm). Holes were modeled to be 4mm deep in relation to clinical practice where holes are drilled from the deep margin of subchondral trabecular bone to the cortical subchondral bone plate. To test the biomechanic variations between drill hole sizes, models with hole sizes pertinent to standard-of-care commercially available orthopaedic drill sizes of 1.1mm, 2.4 mm, or 4.0 mm holes were loaded across the top surface over a one second duration and evaluated for effective stress, effective strain, 1st principal strain, and 3rd principal strain in compressive conditions. Results measured effective stress and strain and 1st and 3rd principal strain increased with hole depth. The results of the present FEA modeling study indicate that the larger 4.0 mm diameter holes were associated with greater stresses and strains within OCA shell graft, which may render the allograft at higher risk for mechanical failure. Based on these initial results, the smaller diameter 2.4 mm and 1.1 mm holes will be further investigated to determine optimal number, configuration, and depth of subchondral drilling for OCA preparation for transplantation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 75 - 75
1 Dec 2020
Burkhard B Schopper C Ciric D Mischler D Gueorguiev B Varga P
Full Access

Proximal humerus fractures (PHF) are the third most common fractures in the elderly. Treatment of complex PHF has remained challenging with mechanical failure rates ranging up to 35% even when state-of-the-art locked plates are used. Secondary (post-operative) screw perforation through the articular surface of the humeral head is the most frequent mechanical failure mode, with rates up to 23%. Besides other known risk factors, such as non-anatomical reduction and lack of medial cortical support, in-adverse intraoperative perforation of the articular surfaces during pilot hole drilling (overdrilling) may increase the risk of secondary screw perforation. Overdrilling often occurs during surgical treatment of osteoporotic PHF due to minimal tactile feedback; however, the awareness in the surgical community is low and the consequences on the fixation stability have remained unproved. Therefore, the aim of this study was to evaluate biomechanically whether overdrilling would increase the risk of cyclic screw perforation failure in unstable PHF. A highly unstable malreduced 3-part fracture was simulated by osteotomizing 9 pairs of fresh-frozen human cadaveric proximal humeri from elderly donors (73.7 ± 13.0 ys, f/m: 3/6). The fragments were fixed with a locking plate (PHILOS, DePuy Synthes, Switzerland) using six proximal screws, with their lengths selected to ensure 6 mm tip-to-joint distance. The pairs were randomized into two treatment groups, one with all pilot holes accurately predrilled (APD) and another one with the boreholes of the two calcar screws overdrilled (COD). The constructs were tested under progressively increasing cyclic loading to failure at 4 Hz using a previously developed setup and protocol. Starting from 50 N, the peak load was increased by 0.05 N/cycle. The event of initial screw loosening was defined by the abrupt increase of the displacement at valley load, following its initial linear behavior. Perforation failure was defined by the first screw penetrating the joint surface, touching the artificial glenoid component and stopping the test via electrical contact. Bone mineral density (range: 63.8 – 196.2 mgHA/cm3) was not significantly different between the groups. Initial screw loosening occurred at a significantly lower number of cycles in the COD group (10,310 ± 3,575) compared to the APD group (12,409 ± 4,569), p = 0.006. Number of cycles to screw perforation was significantly lower for the COD versus APD specimens (20,173 ± 5,851 and 24,311 ± 6,318, respectively), p = 0.019. Failure mode was varus collapse combined with lateral-inferior translation of the humeral head. The first screw perforating the articular surface was one of the calcar screws in all but one specimen. Besides risk factors such as fracture complexity and osteoporosis, inadequate surgical technique is a crucial contributor to high failure rates in locked plating of complex PHF. This study shows for the first time that overdrilling of pilot holes can significantly increase the risk of secondary screw perforation. Study limitations include the fracture model and loading method. While the findings require clinical corroboration, raising the awareness of the surgical community towards this largely neglected risk source, together with development of devices to avoid overdrilling, are expected to help improve the treatment outcomes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 18 - 18
1 Dec 2021
Brown M Wilcox R Isaac G Anderson J Board T Williams S
Full Access

Abstract. OBJECTIVES. Dual mobility (DM) total hip replacements (THRs) were introduced to reduce the risk of hip dislocation in at-risk patients. DM THRs have shown good overall survivorship and low rates of dislocation, however, the mechanisms which describe how these bearings function in-vivo are not fully understood. This is partly due to a lack of suitable characterisation methodologies which are appropriate for the novel geometry and function of DM polyethylene liners, whereby both surfaces are subject to articulation. This study aimed to develop a novel semi-quantitative geometric characterisation methodology to assess the wear/deformation of DM liners. METHODS. Three-dimensional coordinate data of the internal and external surfaces of 14 in-vitro tested DM liners was collected using a Legex 322 coordinate measuring machine. Data was input into a custom Matlab script, whereby the unworn reference geometry was determined using a sphere fitting algorithm. The analysis method determined the geometric variance of each point from the reference surface and produced surface deviation heatmaps to visualise areas of wear/deformation. Repeatability of the method was also assessed. RESULTS. Semi-quantitative analysis of the surface deviation heatmaps revealed circumferential damage patterns similar to those reported in the literature. Additionally, the location of the damaged regions corresponded between the internal and external surfaces. Comparing five repeat measurements of the same liner, the maximum geometric variance of each surface varied by 1 µm (standard deviation) suggesting a high repeatability of the method. CONCLUSIONS. This study presents an effective and highly repeatable characterisation methodology to semi-quantitatively assess the wear/deformation of in-vitro tested DM liners. This method is suitable for the analysis of retrieved DM liners whereby no pre-service information is available, which may provide information about the complex in-vivo kinematics and mechanical failure mechanisms of these bearings


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 41 - 41
1 Nov 2021
Hammersen T Zietzschmann S Richter W
Full Access

Introduction and Objective. Current cartilage repair strategies lack adequate tissue integration capacity and often present mechanical failure at the graft-to-host tissue junction. The design of multilayered osteochondral tissue engineering (TE) constructs is an attractive approach to overcome these problems. However, calcium ion-release from resorbable bone-replacement materials was suggested to compromise chondrogenic differentiation of adjacent cartilage tissue and it is unclear whether articular chondrocytes (AC) or mesenchymal stroma cells (MSC) are more sensitive to such conditions. Aim of the study was to compare how elevated calcium levels affect cartilage matrix production during re-differentiation of AC versus chondrogenic differentiation of MSC. The results of this study will help to identify the ideal cell source for growth of neocartilage adjacent to a calcified bone replacement material for design of multilayered osteochondral TE approaches. Materials and Methods. Expanded human AC and MSC (6–12 donors per group) were seeded in collagen type I/III scaffolds and cultured under standard chondrogenic conditions at control (1.8mM) or elevated (8.0mM) CaCl2 for 35 days. Proteoglycan and collagen production were assessed via radiolabel-incorporation, ELISA, qPCR and Western blotting. Differences between groups or cell types were calculated using the non-parametric Wilcoxon or Mann-Whitney U test, respectively, with p < 0.05 considered significant. Results. Elevated calcium significantly reduced GAG synthesis (63% of control, p=0.04) and chondrogenic marker expression of AC, lowering the GAG/DNA content (47% of control, p=0.004) and collagen type II deposition (24% of control, p=0.05) of neocartilage compared to control conditions. Opposite, at elevated calcium levels MSC-derived chondrocytes significantly increased GAG synthesis (130% of control, p=0.02) and collagen type II content (160% of control, p=0.03) of cartilage compared to control tissue. Chondrogenic and hypertrophic marker expression was insensitive to calcium levels in MSC-derived chondrocytes. As a result, maturation under elevated calcium allowed for a significantly higher GAG/DNA content in MSC-derived samples compared to AC constructs, although under control conditions both groups developed similarly. Conclusions. AC and MSC showed an opposite reaction to elevation of calcium levels regarding cartilage matrix production and we propose MSC as a preferred cell source to grow chondrocytes in vicinity to calcified bone replacement materials. Since MSC remained prone to hypertrophy under elevated calcium, trizonal cartilage TE constructs, where an AC-layer is separated from the bone replacement phase by an intermediate layer of MSC appear as an ideal design for multilayered osteochondral TE with respect to calcium sensitivity of cells and protection of the upper cartilage layer from hypertrophy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models. Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97). FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies. Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 152 - 152
1 Nov 2021
Selim A Seoudi N Algeady I Barakat AS
Full Access

Introduction and Objective. Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for lag screw failure is the tip apex distance (TAD), yet lateral femoral wall thickness (LWT) is another evolving parameter for detecting the potential for lateral wall fracture with subsequent medialization and implant failure. The aim of this study is to determine the mean and cut off levels for LWT that warrant lateral wall fracture and the implications of that on implant failure, revision rates and implant choice. Materials and Methods. This prospective cohort study included 42 patients with a mean age of 70.43y with intertrochanteric hip fractures treated with DHS fixation by the same consultant surgeon from April 2019 to December 2019. The study sample was calculated based on a confidence level of 90% and margin of error of 5%. Fracture types included in the study are 31A1 and 31A2 based on the AO/OTA classification system. LWT was assessed in all patients preoperatively using Surgimap (Nemaris, NY, USA) software. Patients were divided into two groups according to the post-operative integrity of the lateral femoral wall, where group (A) sustained a lateral femoral wall fracture intraoperatively or within 12 months after the index procedure, while in group (B) the lateral femoral wall remained intact. All patients were regularly followed up radiologically and clinically per the Harris Hip Score (HHS) for a period of 12 months. Results. At 12 months five patients (12%) suffered a postoperative lateral wall fracture, while in 37 patients (88%) the lateral femoral wall remained intact. The mean preoperative LWT of patients with a postoperative lateral wall fracture was 18.04 mm (SD ± 1.58) compared to 26.22mm (SD ± 5.93) in the group without a lateral wall fracture. All patients with post-operative lateral femoral wall fracture belong to 31A2 group, while 78.4% of the patients that did not develop post-operative lateral femoral wall fracture belong to 31A1 group. Eighty percent of patients in group (A) experienced shortening, collapse, shaft medialization and varus deformity. The mean Harris hip score of group (A) was 39.60 at 3 months and 65.67 at 6 months postoperatively, while that of group (B) was 80.75 and 90.65 at 3 and 6 months respectively, denoting a statistically significant difference (P<0.001). Treatment failure meriting a revision surgery was 40 % in group (A) and 8% in group (B) denoting a statistically significant difference (p<0.001). The cut-off point of LWT below which there is a high chance of post-operative lateral wall fracture when fixed with DHS is 19.6mm. This was shown on the receiver operating curve (ROC) by plotting the sensitivity against the 100 % specificity with a set 95% confidence interval 0.721 – 0.954. When lateral wall thickness was at 19.6 mm, the sensitivity was 100% and specificity was 81.8%. The area under the curve (AUC) was 0.838, which was statistically significant (P = 0.015). Conclusions. Preoperative measurement of LWT in elderly patients with intertrochanteric hip fractures is decisive. The cut off point for postoperative lateral wall fracture according to our study is 19.6 mm; hence, intramedullary fixation has to be considered in this situation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 21 - 21
1 Mar 2021
Pryce G Al-Hajjar M Thompson J Wilcox R Board T Williams S
Full Access

Abstract. Objectives. Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. A geometric model of a THR in situ was previously developed to predict impingement for different component orientations and joint motions of activities[2]. However, the consequence of any predicted impingement is unknown. This study aimed to develop an in-vitromethod to investigate the effects of different impingement scenarios. Method. A ProSim electro-mechanical single-station hip simulator (Simulation Solutions) was used, and the 32mm diameter metal-on-polyethylene THRs (DePuy Synthes) were assessed. The THR was mounted in an inverted orientation, and the input (motion and loading) applied simulated a patient stooping over to pick an object from the floor[3]. The impingement severity was varied by continuing motion past the point of impingement by 2.5° or 5°, and compressive load applied in the medial-lateral direction was varied from 100N to 200N. Each test condition was applied for 40,000 cycles (n=3). Rim penetration was assessed using a CMM and component separation was measured during the tests. Results. Varying the impingement severity from 2.5° to 5° increased rim penetration two-fold (by >0.05mm) and increased medial-lateral component separation three-fold (by >0.3mm) (both p<0.001). Increasing the medial-lateral load had less effect on the rim penetration and component separation, with exception of rim penetration with the higher impingement severity condition. Conclusion. The impingement severity influenced the medial-lateral component separation, suggesting that increasing the impingement severity could increase the risk of dislocation. The impingement severity, which could be predicted from geometric modelling, was also found to significantly affect rim penetration, meaning this method could be used alongside geometric modelling to predict impingement severity in a range of scenarios. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 19 - 19
1 Mar 2021
Mischler D Schader JF Windolf M Varga P
Full Access

To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the humeral head suggest that the primary implant stability may be improved by optimizing the screw orientations. Finite element (FE) analysis allows testing of various implant configurations repeatedly to find the optimal design. The aim of this study was to evaluate whether computational optimization of the orientation of the PHILOS plate locking screws using a validated FE methodology can improve the predicted primary implant stability. The FE models of nineteen low-density (humeral head BMD range: 73.5 – 139.5 mg/cm3) left proximal humeri of 10 male and 9 female elderly donors (mean ± SD age: 83 ± 8.8 years) were created from high-resolution peripheral computer tomography images (XtremeCT, Scanco Medical, Switzerland), using a previously developed and validated computational osteosynthesis framework. To simulate an unstable mal-reduced 3-part fracture (AO/OTA 11-B3.2), the samples were virtually osteotomized and fixed with the PHILOS plate, using six proximal screws (rows A, B and E) according to the surgical guide. Three physiological loading modes with forces taken from musculoskeletal models (AnyBody, AnyBody Technology A/S, Denmark) were applied. The FE analyses were performed with Abaqus/Standard (Simulia, USA). The average principal compressive strain was evaluated in cylindrical bone regions around the screw tips; since this parameter was shown to be correlated with the experimental number of cycles to screw cut-out failure (R2 = 0.90). In a parametric analysis, the orientation of each of the six proximal screws was varied by steps of 5 in a 5×5 grid, while keeping the screw head positions constant. Unfeasible configurations were discarded. 5280 simulations were performed by repeating the procedure for each sample and loading case. The best screw configuration was defined as the one achieving the largest overall reduction in peri-screw bone strain in comparison with the PHILOS plate. With the final optimized configuration, the angle of each screw could be improved, exhibiting significantly smaller average bone strain around the screw tips (range of reduction: 0.4% – 38.3%, mean ± SD: 18.49% ± 9.56%). The used simulation approach may help to improve the fixation of complex proximal humerus fractures, especially for the target populations of patients at high risk of failure


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 65 - 65
1 Dec 2020
Panagiotopoulou V Ovesy M Gueorguiev B Richards G Zysset P Varga P
Full Access

Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the humeral head and (2) evaluate and compare the ability of bone density measures and FE simulations to predict the experimental findings. Screw perforation was investigated experimentally via quasi-static ramped compression testing of 20 cuboidal bone specimens at 1 mm/min. They were harvested from four fresh-frozen human cadaveric proximal humeri of elderly donors (aged 85 ± 5 years, f/m: 2/2), surrounded with cylindrical embedding and implanted with a single 3.5 mm locking screw (DePuy Synthes, Switzerland) centrally. Specimen-specific linear µFE (ParOSol, ETH Zurich) and nonlinear explicit µFE (Abaqus, SIMULIA, USA) models were generated at 38 µm and 76 µm voxel sizes, respectively, from pre- and post-implantation micro-Computed Tomography (µCT) images (vivaCT40, Scanco Medical, Switzerland). Bone volume (BV) around the screw and in front of the screw tip, and tip-to-joint distance (TJD) were evaluated on the µCT images. The µFE models and BV were used to predict the experimental force at the initial screw loosening and the maximum force until perforation. Initial screw loosening, indicated by the first peak of the load-displacement curve, occurred at a load of 64.7 ± 69.8 N (range: 10.2 – 298.8 N) and was best predicted by the linear µFE (R. 2. = 0.90), followed by BV around the screw (R. 2. = 0.87). Maximum load was 207.6 ± 107.7 N (range: 90.1 – 507.6 N) and the nonlinear µFE provided the best prediction (R. 2. = 0.93), followed by BV in front of the screw tip (R. 2. = 0.89). Further, the nonlinear µFE could better predict screw displacement at maximum force (R. 2. = 0.77) than TJD (R. 2. = 0.70). The predictions of non-linear µFE were quantitatively correct. Our results indicate that while density-based measures strongly correlate with screw perforation force, the predictions by the nonlinear explicit µFE models were even better and, most importantly, quantitatively correct. These models have high potential to be utilized for simulation of more realistic fixations involving multiple screws under various loading cases. Towards clinical applications, future studies should investigate if explicit FE models based on clinically available CT images could provide similar prediction accuracies


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 79 - 79
1 Apr 2018
van Duren B Wescott R Sugand K Carrington R Hart A
Full Access

Background. Hip fractures affect 1.6 million people globally per annum, associated with significant morbidity and mortality. A large proportion are extracapsular neck of femur fractures, treated with the dynamic hip screw (DHS). Mechanical failure due to cut-out is seen in up to 7% of DHS implants. The most important predictor of cut-out is the tip-apex distance (TAD), a numerical value of the lag screw”s position in the femoral head. This distance is determined by the psychomotor skills of the surgeon guided by fluoroscopic imaging in theatre. With the current state of surgical training, it is harder for junior trainees to gain exposure to these operations, resulting in reduced practice. Additionally, methods of simulation using workshop bones do not utilise the imaging component due to the associated radiation risks. We present a digital fluoroscopy software, FluoroSim, a realistic, affordable, and accessible fluoroscopic simulation tool that can be used with workshop bones to simulate the first step of the DHS procedure. Additionally, we present the first round of accuracy tests with this software. Methods. The software was developed at the Royal National Orthopaedic Hospital, London, England. Two orthogonally placed cameras were used to track two coloured markers attached to a DHS guide-wire. Affine transformation matrices were used in both the anterior-posterior (AP) and cross table lateral (CTL) planes to match three points from the camera image of the workshop bone to three points on a pre-loaded hip radiograph. The two centre points of each marker were identified with image processing algorithms and utilised to digitally produce a line representing the guide-wire on the two radiographs. To test the accuracy of the system, the software generated 3D guide-wire apex distance (GAD) (from the tip of the guide-wire to a marker at the centre of calibration) was compared to the same distance measured with a digital calliper (MGAD). In addition, the same accuracy value was determined in a simulation scenario, from 406 attempts by 67 medical students. Results. The median absolute inaccuracy of FluoroSim with 270 measurements was 3.35mm (IQR = [1.15mm, 6.53mm]). The absolute inaccuracy showed a graded increase the further away the tip of the guide-wire was from the centre of calibration; MGAD ≤10mm, median absolute inaccuracy = 1.53mm; MGAD 10mm<x≤20mm, median absolute inaccuracy = 4.97mm; MGAD >20mm, median absolute inaccuracy = 7.23mm. Comparison between all three groups reached significance (p < 0.001). In a simulation scenario with medical students, FluoroSim had a significantly greater median absolute inaccuracy of 4.79mm compared to the testing scenario (p < 0.001). Conclusion. FluoroSim is a safe and inexpensive digital imaging adjunct to workshop bones simulation. To our knowledge this technology has not been explored in the context of DHS simulation, and has the potential to be extended to other orthopaedic procedures


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 31 - 31
1 Aug 2013
Bradman H Winter A
Full Access

Introduction and Aims. Peritrochanteric femur fractures are common and impose major costs on the healthcare system. A fixed angle sliding hip screw is the principle method of treatment, but the rate of mechanical failure associated with these devices can be high; the usual mechanism being the collapse of the neck shaft angle leading to extrusion of the screw from the femoral head, commonly known as “cutout”. Many variables contribute to the risk of cutout, however there is substantial evidence that the “Tip Apex Distance” (a single number that summarises the position and depth of the lag screw on anteroposterior and lateral radiographs after controlling for magnification) is the single best predictor of risk of failure. There is a strong statistical relationship between an increasing tip apex distance (TAD) and the rate of cutout. Specifically, a TAD of 25 mm or less significantly reduces risk of failure. The aim of our study is to assess levels of compliance with a maximum TAD of 25 mm in peritrochanteric femur fractures treated with Dynamic Hip Screws and IM Nails. Methods. We retrospectively measured the TAD of 45 patients who had undergone DHS or IM nails in the previous 6 months. Results. 21/28 of DHS were within 25 mm as opposed to 15/17 of IM nails. Discussion. In this cohort, 75% and 88% of patients respectively had a tip apex distance which complied with best evidence to reduce risk of failure. In total, 20% of patients fell outwith acceptable limits. It was surmised that the IM nails would have greater tip apex distances due to fractures generally being more complex, however it is suggested that this may be ameliorated by greater senior input in these cases


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 179 - 185
1 Jan 2010
Väänänen P Pajamäki I Paakkala A Nurmi JT Pajamäki J

We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1245 - 1251
1 Sep 2006
Pendegrass CJ Oddy MJ Sundar S Cannon SR Goodship AE Blunn GW

We examined the mechanical properties of Vicryl (polyglactin 910) mesh in vitro and assessed its use in vivo as a novel biomaterial to attach tendon to a hydroxyapatite-coated metal implant, the interface of which was augmented with autogenous bone and marrow graft. This was compared with tendon re-attachment using a compressive clamp device in an identical animal model. Two- and four-ply sleeves of Vicryl mesh tested to failure under tension reached 5.13% and 28.35% of the normal ovine patellar tendon, respectively. Four-ply sleeves supported gait in an ovine model with 67.05% weight-bearing through the operated limb at 12 weeks, without evidence of mechanical failure. Mesh fibres were visible at six weeks but had been completely resorbed by 12 weeks, with no evidence of chronic inflammation. The tendon-implant neoenthesis was predominantly an indirect type, with tendon attached to the bone-hydroxyapatite surface by perforating collagen fibres


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis.

In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone.

We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength.

Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 114 - 121
1 Jan 2008
Pendegrass CJ Gordon D Middleton CA Sun SNM Blunn GW

Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron microscopy and transmission electron microscopy to assess cell parameters.

We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment in vivo, producing an effective barrier of infection.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1006 - 1011
1 Jul 2005
Hatano H Ogose A Hotta T Endo N Umezu H Morita T

We examined osteochondral autografts, obtained at a mean of 19.5 months (3 to 48) following extracorporeal irradiation and re-implantation to replace bone defects after removal of tumours. The specimens were obtained from six patients (mean age 13.3 years (10 to 18)) and consisted of articular cartilage (five), subchondral bone (five), external callus (one) and tendon (one). The tumour cells in the grafts were eradicated by a single radiation dose of 60 Gy. In three cartilage specimens, viable chondrocytes were detected. The survival of chondrocytes was confirmed with S-100 protein staining. Three specimens from the subchondral region and a tendon displayed features of regeneration. Callus was seen at the junction between host and irradiated bone.