Aims. Nearly 99,000 total knee arthroplasties (TKAs) are performed in UK annually. Despite plenty of research, the satisfaction rate of this surgery is around 80%. One of the important intraoperative factors affecting the outcome is alignment. The relationship between joint obliquity and functional outcomes is not well understood. Therefore, a study is required to investigate and compare the effects of two types of alignment (mechanical and kinematic) on functional outcomes and range of motion. Methods. The aim of the study is to compare navigated kinematically aligned TKAs (KA TKAs) with navigated
Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with
The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral
Introduction. Functional outcomes of
Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional
In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic
Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides
Aims. Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either
Bone is a dynamic tissue that undergoes continuous
To characterize the microstructural organization of collagen fibers in human medial menisci and the response to
Extracellular matrix (ECM)
Aims. The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the
Abstract. Objectives. The patella tendon (PT) is commonly used as a graft material for anterior cruciate ligament reconstruction (ACLR). The function of the graft is to restore the
Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading,
The purpose of the study was to compare the
Abstract. OBJECTIVE. Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA. 1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology. 2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues. 3. , expressed in osteocytes. 4. and known to be downregulated in bone OA
Aims. Our aim was to compare kinematic with
Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by
Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either
Abstract. Introduction. Osteoarthritis (OA) is one of the lead causes of pain and disability in adults. Bone marrow lesions (BMLs) are one feature of subchondral bone involvement in OA. MRI images suggest changes in tissue content and properties in the affected regions however, it is not known if this alters the